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Abstract: The methodology used by the First Street Foundation Wildfire Model (FSF-WFM) to
compute estimates of the 30-year, climate-adjusted aggregate wildfire hazard for the contiguous
United States at 30 m horizontal resolution is presented. The FSF-WFM integrates several existing
methods from the wildfire science community and implements computationally efficient and scalable
modeling techniques to allow for new high-resolution, CONUS-wide hazard generation. Burn
probability, flame length, and ember spread for the years 2022 and 2052 are computed from two ten-
year representative Monte Carlo simulations of wildfire behavior, utilizing augmented LANDFIRE
fuel estimates updated with all the available disturbance information. FSF-WFM utilizes ELMFIRE, an
open-source, Rothermel-based wildfire behavior model, and multiple US Federal Government open
data sources to drive the simulations. LANDFIRE non-burnable fuel classes within the wildland–
urban interface (WUI) are replaced with fuel estimates from machine-learning models, trained
on data from historical fires, to allow the propagation of wildfire through the WUI in the model.
Historical wildfire ignition locations and NOAA’s hourly time series of surface weather at 2.5 km
resolution are used to drive ELMFIRE to produce wildfire hazards representative of the 2022 and 2052
conditions at 30 m resolution, with the future weather conditions scaled to the IPCC CMIP5 RCP4.5
model ensemble predictions. Winds and vegetation were held constant between the 2022 and 2052
simulations, and climate change’s impacts on the future fuel conditions are the main contributors to
the changes observed in the 2052 results. Non-zero wildfire exposure is estimated for 71.8 million out
of 140 million properties across CONUS. Climate change impacts add another 11% properties to this
non-zero exposure class over the next 30 years, with much of this change observed in the forested
areas east of the Mississippi River. “Major” aggregate wildfire exposure of greater than 6% over the
30-year analysis period from 2022 to 2052 is estimated for 10.2 million properties. The FSF-WFM
represents a notable contribution to the ability to produce property-specific, climate-adjusted wildfire
risk assessments in the US.

Keywords: fire model; property-level; climate; fuels; ignition

1. Introduction

The threat of increasing wildfire risk across the United States has been described by a
number of studies that discuss both the increasing incidence of wildfire and the increasing
threat to forests and communities [1–3]. The implications of this growing risk threaten the
economic stability, natural resources, and quality of life for the affected communities and lo-
cal residents, and there are a number of resources (e.g., https://wildfireresearchcenter.org/,
accessed on 13 June 2022; https://wildfirerisk.org/, accessed on 13 June 2022) now available
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to assist communities in meeting those growing risks. Westerling et al. [2] report that land
management costs already exceeded USD 1 billion in costs nearly 10 years ago; however, a
report from the Bureau of Land Management (BLM) and the Western Forestry Leadership
Coalition (WFLC) highlighted the fact that this direct cost is simply a fraction of the larger
economic costs of wildfires [4]. The WFLC report highlighted the fact that, beyond the
direct dollars spent on land management and suppression, there are additional direct costs
(such as firefighting crews), indirect costs (extensive and long-term implications of lost tax
revenue, land recovery, and dips in property value), rehabilitation costs (watershed restora-
tion, short term emergency loans, etc.), and additional uncharacterized costs (including
human costs). The report estimates that the cost of wildfires reported through direct costs
may only account for about 3% of all costs incurred from wildfires. In fact, NOAA reports
over USD 79.8 billion in costs associated with the occurrence of wildfires between the most
recent 5-year period of recorded events (2018 and 2021), not accounting for much of the cost
associated with land management or long-term indirect and additional costs [5]. While the
costs of wildfires have been exceedingly high in recent years, it is also growing at a rate that
indicates its increasing impact on communities in the US, with the cost of the preceding
5 years of economic damages totaling only USD 8.5 billion (2012–2016) [5]. This increase in
damages is nearly 10-fold and represents the growing risk to communities, and residents in
those communities. A number of commercial fire risk products have been developed and
are in wide use in the insurance industry (e.g., Verisk’s “FireLine” https://www.verisk.
com/siteassets/media/downloads/underwriting/location/location-fireline.pdf, accessed
on 1 June 2022), but these are statistically based solely upon past fires and related damages.

The growing risk has been linked to a series of different drivers in the literature. Some
explanations have drawn on anthropogenic changes in industry-associated latent conse-
quences, such as forest regrowth following a decline in logging in the late 19th century,
which allowed for structural changes to the biomass (fuels) in those areas driven by the
lack of the natural regulation from regularly occurring fires [2]. Competing explanations
focus on the impact of variability in climate conditions associated with the increasing risk
of wildfires, including increasing variability in moisture conditions, increasing drought
frequency, and warming temperatures [6]. Finally, these explanations are further com-
pounded by the fact that the areas most at risk of wildfires in direct relation to residential
land uses have grown extensively in recent years [7]. This interface, referred to as the
wildlands–urban interface (WUI), has shown significant growth in the last 20 years, with
Radeloff and colleagues [7] reporting about an 8% growth in WUI area and a nearly 35%
growth in population and housing units. In total, the research reports that half of all homes
built in the 1990s, and about 40% in the 2000s, were built in the WUI. Recent statistical
analyses at the property level have shown that 97% of home losses are found in the WUI [8].
Such rapid growth in high-risk areas means that even more properties are at risk of wildfire.
Beyond the impact on magnitude, the larger WUI populations simply mean there is more
opportunity for fire as the vast majority are ignited by human cases [9].

In response to the need to respond to this growing nationwide risk at the community
level, the U.S. Federal Government supported the creation and publication of the publicly
available Wildfire Risk to Communities (hereafter WRC; see WildfireRisk.org) [10], which
conveys the relative risk for communities based on a 270 m horizontal resolution analysis.
The tool is primarily intended to provide insight for community level wildfire solutions in
a way that allows for communities to understand their relative risk comparatively with
other areas, so that resources can be allocated in a measured and efficient way, with the
goal of combating economic and human loss from wildfires. Wildfire Risk to Communi-
ties’ estimates are based on fire simulations that incorporate the US Forest Service’s 2014
Landscape Fire and Resource Management Planning Tools database v2.0.0 [11], with some
modifications (Smail, personal comm. 2021), which provides open data describing the com-
position and state of fuels across the contiguous United States (CONUS). However, WRC’s
focus is on community risk and actions to reduce those risks, and the metrics computed
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are not focused on individual properties and homes, nor does WRC include the impacts of
climate change on future risk.

The development of the WRC tool served as a milestone in giving communities the
ability to assess risk in their area and plan for resource allocation in relation to that risk.
However, the developers of the tool acknowledge that it is a community level tool and
should be used for community level purposes. This research aims to build upon the wildfire
community’s considerable research on wildfire risk modeling [12], and to complement the
WRC community level tool with a high-resolution model developed specifically for the
property level at a national scale, the First Street Foundation-Wildfire Model (FSF-WFM).
Given the increase in wildfire occurrence and the subsequent economic consequences [13],
there remains a need to quantify the probable changes in wildfire exposure for US property
owners and residents to provide to them with an improved awareness of their specific,
property-level wildfire risk now and their expected risk in the future. The use of wildfire
hazard estimates to provide property-level vulnerability estimates has been demonstrated
in numerous studies, e.g., [14,15]. As the number of communities in the built environment
suffering extensive losses grows (e.g., losses in the WUI exemplified by Gatlinburg, TN
2016; Paradise, CA 2018; Grand County, CO 2020; Boulder County, CO 2021), there is also a
recognized need to describe the spread and risk of wildfire specifically within the WUI [16].
The development of such a model is based on the unique risk each individual property
faces, based on property-level characteristics, and can be scaled nation-wide to provide
homeowners with mitigation solutions, such as those included in the “resilience pathways”
described in [17].

Building upon the WRC approach, the LANDFIRE database, climate projections, and
existing open-source fire behavior models, the remainder of this document is designed to
provide a transparent understanding of the framework and methodology that went into
the development of the property-level wildfire model, taking an open science approach
(https://earthdata.nasa.gov/esds/open-science, accessed on 13 June 2022). This study
does not attempt to provide quantitative comparisons between the outputs of the FSF-
WFM and the WRC approaches. While comparisons may be useful in understanding the
nuances of the fuels used and model implementations, any direct quantitative estimates
of the differences are difficult to interpret, not just due to those differences, but also
because the models were developed with different purposes in mind. Direct quantitative
comparisons with the aforementioned property-level statistical models typically used in
insurance applications may be useful, since they are more similar in purpose, but due to
the proprietary nature of and costs associated with those models’ outputs, the authors do
not currently have access to those outputs at a sufficiently large scale to conduct such a
comparison. Any such comparisons of results may be the subject of a future study, but
would specifically be a comparison of methodological differences of scale and purpose
versus a comparison of accuracy of the models. To that point, the model described in
this paper is specifically designed to measure property risk and should be thought of as
complementary to the larger community risk products.

2. Model Development

The FSF-WFM approach is based on the application of a fire behavior model to explore
the incidence, severity, and probability of wildfires that occur at a property-level resolution
across CONUS. This general approach has been shown to be useful at large scales in
the aforementioned WRC using FSim [18], and on regional scales, such as the use of
WyoFire [19]. Here, we use an open-source wildfire behavior model, ELMFIRE (Eulerian
Level Set Model of Fire Spread), which has likewise been shown to produce useful results
in this type of application [20], but also extends its use to estimate future wildfire hazards
based on climate predictions.

The development of the FSF-WFM includes a series of steps associated with the
integration of fuels, fire weather, and ignition locations into ELMFIRE. While each of these
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components will be explained in detail below, a definition/purpose of each component as
they relate to the wildfire model is provided here for context.

• Fuels: estimation of the fuels that support wildfires across the US at 30 m horizon-
tal resolution, including assembly of new fuel estimates updated with disturbance
descriptions for the previous 10 years and the conversion of buildings within the
WUI into a burnable fuel type that allows the appropriate progression of wildfire
throughout the WUI in the fire behavior model.

• Fire weather: assembly of the weather data to drive the fire behavior model under
a representative range of fire weather conditions for 2022 and 2052. Fire weather
was derived from the National Oceanic and Atmospheric Administration’s (NOAA’s)
surface weather reanalysis for 2011–2020 to create the 2022 hazard layers, and was
driven by the same time series in 2052 with air temperature, precipitation, and humid-
ity scaled to 2052 conditions, as represented by downscaled International Panel on
Climate Change (IPCC) climate model ensemble results.

• Ignition locations: identification of the likely ignition locations, temporal fire occur-
rence patterns, and conditions most likely for fire spread for future wildfires.

• Fire behavior model: application of a fire incidence and landscape behavior model
across the contiguous United States in a Monte Carlo simulation to build probabilistic
estimates of 2022 and 2052 wildfire hazards in terms of burn likelihood, fire intensity,
and spread of embers at 30 m horizontal resolution.

The resulting wildfire hazards product is based on the data sources listed, which were
used to update the data to May 2021 (see Appendix A).

2.1. Fuels

The wildfire hazard estimate is heavily dependent upon estimates of the type, quantity,
age, and condition of the combustible fuels across the US. Version 2.0.0 of the canonical U.S.
Forest Service (USFS) LANDFIRE [11] fuels dataset at 30 m horizontal resolution is utilized
as a baseline for provision of this fuel information, and is updated to characterize the risks
in the present through the inclusion of all known disturbances from May 2021 to create
a current fuels layer that is useful for assessing wildfire risk for the year 2022. One must
note that not all disturbances were able to be adequately documented or described, and
different US states exhibit different levels and styles of reporting. States with the highest
fire risk in the Western and Southeastern US (e.g., California, Oregon, Arizona, Colorado,
Washington, Idaho, and New Mexico) were prioritized to ensure their adequate inclusion
in this study. These disturbances were incorporated as changes to surface and canopy fuels
by modifying the geographically referenced LANDFIRE classifications, and include recent
wildfires, prescribed burns, harvests, and other forest management practices, as reported
by the data sources listed in Appendix B. Modification of the fuel descriptions was carried
out in accordance with the LANDFIRE fuel classes and methodologies, and is congruent
with the LANDFIRE disturbance code schema, which consists of thematic three-digit code
values corresponding to disturbance type, severity, and time since disturbance, respectively,
per the LANDFIRE Fuel Disturbance Attribute Data Dictionary [21]. A representation
of the processes is shown in Figure 1 that describes the methods used to create the fuels
estimate for this study.
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burnable fuel classes in the WUI with fuel classes that were found to approximate observed fire 
behavior in past WUI fires. Computation was performed using Google Earth Engine (EE). This fig-
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the year 2020, the MTBS dataset was augmented with data from all fires of size <500 acres 
from the National Interagency Fire Center (NIFC). 

To ensure the consistency of fire severity characterizations between the MTBS and 
NIFC datasets, burn severity was informed by calculating the normalized burn ratio 
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classification. 

For non-wildfire disturbances, including harvest, fuel mitigation treatments, and 
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agement practices across the U.S. and the quality of data entry varies considerably from 
state to state. To ensure that every feature is assigned a standardized disturbance class, all 
unique treatment names from every dataset were compiled for review by forestry field 
experts who are included in the authorship of this paper. Each unique disturbance name 
in the document was assigned a LANDFIRE disturbance type, and assigned the appropri-
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Figure 1. The modifications of the LANDFIRE v2.0.0 fuels (LF), including use of disturbance
data (FVC—fuel vegetation cover; FVH—fuel vegetation height; FVT—fuel vegetation type; BPS—
biophysical settings) to modify surface (FM40) and canopy fuel classes (canopy cover—CC; canopy
height—CH; canopy base height—CGH; canopy bulk density—CBD), and the replacement of non-
burnable fuel classes in the WUI with fuel classes that were found to approximate observed fire
behavior in past WUI fires. Computation was performed using Google Earth Engine (EE). This figure
represents steps 1 and 2 in the fuel methodology; steps 3 and 4 are included in Figure 4.

2.1.1. Disturbances

Disturbances from wildfires across CONUS were incorporated by using data shared
by the Monitoring Trends in Burn Severity (MTBS) [22] program, which maps the burn
severity and extent of large fires across all lands in the US. At the time of analysis, the
MTBS dataset included fires of an area larger than 500 acres through 2019. Therefore, for
the year 2020, the MTBS dataset was augmented with data from all fires of size <500 acres
from the National Interagency Fire Center (NIFC).

To ensure the consistency of fire severity characterizations between the MTBS and
NIFC datasets, burn severity was informed by calculating the normalized burn ratio
(NBR) [23] for one pre-fire and one ninety-day-window post-fire cloud-filtered compos-
ite image corresponding to each fire. The pre-fire NBR was then subtracted from the
post-fire NBR to create the relative difference normalized burn ratio (RdNBR) index [23].
“Miller’s threshold” [23] was then applied to the RdNBR image to create a five-class burn
severity classification.

For non-wildfire disturbances, including harvest, fuel mitigation treatments, and
prescribed burns, there are no uniform naming or reporting conventions for forest man-
agement practices across the U.S. and the quality of data entry varies considerably from
state to state. To ensure that every feature is assigned a standardized disturbance class,
all unique treatment names from every dataset were compiled for review by forestry field
experts who are included in the authorship of this paper. Each unique disturbance name in
the document was assigned a LANDFIRE disturbance type, and assigned the appropriate
three digit LANDFIRE disturbance code that captures disturbance types, severity, and time
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since disturbance. A distribution associated with the types and severity of disturbances is
reported in Table 1.

Table 1. Distribution of disturbance types and severity.

Disturbance Type %

Fire 92.8%
Mechanical add 0.2%

Mechanical reduce 5.8%
Other 1.2%

Disturbance Severity %

Low 65.0%
Medium 20.2%

High 14.8%

The disturbance types most frequently found in our dataset and listed in Appendix B
were fire (disturbance type 1), mechanical add (disturbance type 2, when fuels are me-
chanically mowed or chipped and transitioned to surface fuels), and mechanical remove
(disturbance type 3, when fuels are removed via cutting, felling, burning, or harvest). We
assigned a disturbance type of “other” (disturbance type 8) to chemical treatments and
grazing. We excluded treatments or activities included in the datasets that would not have
impacted fuels (including but not limited to seeding, habitat restoration, and invasive
species removal). Treatment disturbances, such as hand thinning, piling, prescribed fire,
and other treatments where canopy cover is not altered were assigned a disturbance value
of 1 (low severity); mechanical thinning and harvest were assigned a disturbance value of
2 (medium severity); and clear cuts were assigned a disturbance value of 3 (high severity).
For wildfire disturbances, we followed the MTBS conventions, whereby fire severity class 2
are low severity, 3 are medium severity, and 4 are high severity classifications. Classes 1
(unburned/unchanged) and 5 (increased greenness) were considered undisturbed. The
code for time-since-disturbance was determined based on the year of treatment and the
LANDFIRE zone. Time-since-disturbance was categorized as 1 (disturbances that occurred
in 2020), 2 (disturbances that occurred in 2015–2019), and 3 (disturbances that occurred
in 2011–2014). Due to differences in overall fire risk topographies, for disturbances that
occurred in the LANDFIRE Southeast Super Zone (Zones 46, 55, 56, 58, and 99), the time-
since-disturbance categories are 1 (disturbances that occurred in 2020), 2 (disturbances
that occurred in 2017–2019), and 3 (disturbances that occurred in 2011–2016). Finally, the
treatment and wildfire layers were combined into a single disturbance layer using a priority
ranking ruleset informed by LANDFIRE analysts (Smail, personal comm. 2021) to ensure
the most fuels-relevant disturbance value is assigned in cases of spatial overlap.

Validation with the CONUS scale is most practically accomplished with remote sensing
techniques. The Hansen Global Forest Change dataset [24] provides a ‘loss year’ band that
represents the year(s) when there was detectable canopy loss during the period 2000–2020
at the 30 m per pixel scale. We leveraged this band to create a forest loss bitmask for
2011–2020 and applied it to screen our final aggregate disturbance layer to remove false
positives of moderate and high severity harvest [24].

2.1.2. Fuel Layers

Using LANDFIRE v2.0.0 as the base, four canopy fuel layers (canopy cover, canopy
height, canopy base height, canopy bulk density) and one surface fuel layer (40 Scott and
Burgan Fire Behavior Fuel Model, hereafter FM40) [25] were generated with an effective
year of 2021 for use as inputs into the fire models. Fuels were only transitioned in areas that
were disturbed between 2011 and 2020. Initial layers that represented lookup rulesets in
the LANDFIRE Total Fuel Change Tool (LFTFCT) database were generated. First, canopy
cover and height midpoint layers are derived from the LANDFIRE Fuel Vegetation Cover
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(FVC) and Fuel Vegetation Height (FVH) rasters based on the LFTFCT lookup table values.
Next, using the new updated disturbance layer, a canopy guide layer was generated by
using the LFTFCT master lookup table applied to unique combinations of the disturbance
code, biophysical Settings (BPS), fuel vegetation cover (FVC), fuel vegetation height (FVH),
and fuel vegetation type (FVT). The four canopy fuel layers are then generated using the
following regression equation:

Canopy Fuel = CX + Hy + b (1)

where C is the canopy cover midpoint, H is the canopy height midpoint, x and y are the
scale factors, and b is an intercept value derived from a lookup of unique disturbance
code and FVT combinations from the LFTFCT lookup table. For canopy cover and canopy
height regressions, the cover and height midpoint values are derived from the initial FVC
and FVH midpoint layers described above, while for canopy base height and canopy bulk
density, the midpoint values are derived from the new canopy cover and height layers
that were generated in the step described above. Additionally, canopy bulk density uses
a ruleset to create two stand height coefficients from the canopy height midpoint value
for pixels following the rules described in [26]. Each canopy fuel regression output is
post-processed to ensure values are within the LFTFCT’s valid value range (CC: 0–95;
CH: 0–510; CBH: 0–100; CBD: 0–45), scaled properly, and binned, if necessary, to defined
midpoint values [21]. Finally, the LFTFCT canopy guide layer is applied to each layer using
rulesets based on canopy cover thresholds [21].

The FM40 surface fuel estimates are generated in the same way as the canopy guide,
using the LFTFCT master lookup table applied to unique combinations of the disturbance
code, BPS, FVC, FVH, and FVC. Products generated include the necessary LANDFIRE fuel
and vegetation datasets for the workflow described here, derived fire severity, canopy cover
and canopy height midpoint, as well as disturbance estimates. Included with the 2021 fuel
profile used in this study are the following five updated 2021 fuel layers: FM40, canopy
cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD).
Figure 2 highlights the spatial location of the canopy and surface fuel updates across the
CONUS, with Figure 3 highlighting the update of surface fuels in a more local context.
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2.1.3. WUI Surface Fuel Updates

Typically, homes and other buildings in the built environment, including the WUI,
are classified as non-burnable fuels within LANDFIRE. However, in order to allow the
estimate of wildfire hazards within the WUI under the full range of fire weather conditions,
those properties within the WUI need to be replaced by a burnable fuel estimate to per-
mit the wildfire behavior model to estimate how wildfire could move through the WUI
more accurately.

The first step of developing the WUI fuel model was to derive a current map of WUI
areas. WUI areas are defined by the following two factors: building density and the distance
from wildland vegetation [27]. We used the 2016 NLCD existing vegetation cover layer to
identify areas of wildland vegetation, and derived our own building-density layer from
MapBox building footprints (Appendix A), following evidence from Caggiani et al. [8] that
such higher-resolution analyses enable more precise evaluations of wildfire risks. The WUI
influence zone, WUI intermix, and WUI interface layers were defined as the following [16]:

Influence zone is >75% land coverage of wildland vegetation within 1 mile of a residence.
Intermix is >1 residence per 40 acres and groups of residences larger than 50 acres, with
>50% land coverage of wildland vegetation.
Interface is defined as >1 residence per 40 acres and groups of residences larger than 50 acres,
with <50% land coverage of wildland vegetation, and within 1 mile of wildland vegetation.

Non-burnable pixels were converted to a burnable FM40 fuel type in the WUI intermix
and interface only, as much of the WUI influence zone is already estimated as burnable in
LANDFIRE and does not need to have non-burnable cells converted to burnable cells to
enable the fire behavior model in those areas. Any unnecessary conversions within the
influence zone could potentially result in biased fire behavior by changing the FM40 fuel
types in those areas.
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Properties within the WUI with a non-burnable classification in the 2021 fuel profile
were replaced by an effective fuel type by estimating it from a statistical analysis of 549 his-
torical fire perimeters in the WUI from 2014–2019 (see Appendix C). These past fires were
used to train a random forest machine learning algorithm to predict the appropriate fuel
classification. One must note that the fuel layers do not take into account fuel estimates for
the structures themselves in the WUI that could lead to increased house-to-house ignition
probability; such an approach could be incorporated into a future effort. To convert non-
burnable pixels in the WUI intermix and interface to allow the fire behavior model in those
regions, we used a machine learning approach, as described below.

The 2021 FM40 fuel types derived in the fuel workflow (see Figure 1) described above
are used as the response variable. The training and testing datasets were composed of pixels
in the WUI intermix and interface that were within the fire perimeters from our disturbance
dataset (2011–2020) or within a 1 km buffer around the fire perimeter, in order to capture
areas that remained unburned in those incidents. Other variables included vegetation
products from LANDFIRE v2.0.0 [11], Landsat data derived from 4-month composites
encompassing each training fire’s ignition date (coastal, blue, green, red, NIR, NDVI,
SWIR1, SWIR2, NDVI, MNDWI, BAI), GRIDMET data derived from 1-month composites
encompassing each training fire’s fire ignition date (tmin, tmax, fm1000, vs, mndwi, erc,
bi), topography variables from USGS (slope, elevation, aspect), building density per 1 km2,
the number of structures destroyed per fire, and fire severity. A random-forest model
was trained only on burnable FM40 categories. The prediction area was limited to 2021
FM40 urban/developed (FM40 class 91) and agricultural (FM40 class 93) land in the WUI
intermix and interface. We ran a stratified k-fold cross validation training using 10 folds for
each dataset, with the training data split 80−20% in each run. The best model had a k-fold
training accuracy of 73.0%, with a mean precision (true negative rate) of 76.4% and a mean
recall (true positive rate) of 73.0%. Overall, k-fold training had a mean model accuracy
of 71.2% (68.7–73.7% confidence interval). The overall training accuracy was 96.9%, with
a training Kappa coefficient of 96.8%. For model testing, 30% of the sampled data was
withheld. The independent validation dataset showed 71.7% accuracy, with a testing Kappa
coefficient of 73.0%. A framework for documenting the classification process to replace
non-burnable FM40 classes with burnable classes in the newly defined WUI is presented in
Figure 4, with feature importance highlighted in Figure 5.
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Figure 5. WUI FM40 random forest importance values.

Overall, the vegetation, topographic, and weather variables had higher importance
than the fire-related or building density-related variables in the model (Figure 5). In general,
non-burnable WUI intermix and interface pixels were frequently replaced with grass or
grass-shrub fuel types (FM40 classes 101 and 121, and occasionally 103 in the southeast and
183 in the mid-Atlantic). The predicted pixels were replaced in the 2021 FM40 fuel layer to
create the final 2021 FM40, with the surface fuel model updated for both disturbances and
WUI areas (see Figure 6, for example).



Fire 2022, 5, 117 11 of 44

Figure 6. Classification of building structures from unburnable to burnable fuel types.

2.1.4. Vegetation Changes and Impacts on Fuels

Changes in the composition and volume of vegetation due to climate change’s impacts
have been discussed in depth by a number of researchers, including Westerling et al. [2],
Radeloff et al. [7], Krawchuk et al. [28], and their importance to estimates of fire intensity
has been discussed more recently in a review article by Bowman et al. [29]. These studies
typically examine those vegetative changes over time periods of 75 to 150 years, while the
current study is focused on 30 years only. To investigate the size and scope of vegetation
changes on a 30-year time period at 30 m horizontal resolution, we originally planned
to utilize the Land Use and Carbon Scenario Simulator [30], a Monte-Carlo based state-
and-transition simulation model, to project changes to 14 carbon pools from 2021–2051.
While we observed statistically significant changes in above ground modeled carbon pool
volumes over 30 years across CONUS, we struggled to accurately translate this from those
carbon pools to the canopy and surface vegetation classes needed to drive the fire behavior
model we employ in this study. While research continues on this and several alternate ways
of estimating the vegetation and fuel changes anticipated across CONUS over 30 years in
a changing climate, we have elected to hold the fuel constant between the 2022 and 2052
simulations for the purposes of this study. Future wildfire exposure estimated by the model
described in this study will then be independent of future vegetation changes, and will
depend only on the future weather impacts on the fuel conditions and fire behavior alone.

3. Fire Weather and Climate Change

The primary inputs needed to drive the fire spread model are fuels, topography, and
weather. This section details the integration of climate weather into the development of the
larger FSF-WFM. The weather that can drive the growth and distribution of wildfire can be
separated into the following two categories: (1) the weather before the onset of a wildfire
that impacts fuel condition by making the fuels drier or wetter, and (2) the ‘fire weather’
that occurs at ignition, which can increase intensity and drive fire across the landscape.
To represent a wide range of possible weather-driven fire conditions across the landscape
within the simulations employed here, we used a decade of high spatial and hourly resolu-
tion weather data. Wind speed and direction, relative humidity, and temperature inputs
were assembled from the Real Time Mesoscale Analysis (RTMA) dataset [5], which provides
hourly estimates of sensible weather variables on a 2.5 km grid for CONUS. The RTMA
surface weather data reanalysis from 2011–2020 was augmented by Oregon State PRISM
(Parameter-elevation Regressions on Independent Slopes Model) [31] precipitation data to
fill in gaps in the RTMA data. Ten years was chosen to represent a wide range of weather
conditions, while overlapping the time period for which the fuel state is represented (i.e.,
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LANDSFIRE 2016 augmented to 2020). While a 20- or 30-year time series would provide a
more complete sampling of the possible meteorological conditions, the 10-year time series
does include multiple La Niña and El Niño phases and allows for the computations to be
completed in a reasonable span of time, given the available resources. Additionally, since
this study does not set out to replicate or predict anomalously large or intense fires (e.g.,
plume fires) in a deterministic sense, the Monte Carlo approach used will deemphasize
those extreme or infrequent conditions and instead emphasizes the much more frequent
medium-large fires (i.e., larger than those that are easily suppressed, but smaller than the
rare extreme fires).

To represent the 2052 weather, we have considered the 2048–2057 time series, created
by scaling the hourly 2022 RTMA time series, to forecast 2052 conditions. To do this, we used
the International Panel on Climate Change’s (IPCC) Fifth Coupled Model Intercomparison
Project (CMIP5) ensemble results [32] following the Representative Concentration Pathway
4.5 (RCP 4.5), as downscaled within the daily Multivariate Adaptive Constructed Analogs
(MACA) v2 product [33] to represent the expected weather conditions in 2052 across
CONUS. The RCP 4.5 climate model results were chosen to be relatively conservative in
outlook, and to be consistent with previous and similar work conducted for future flood
risk authors [34,35].

Surface winds were held constant from the 2022 to the 2052 simulation period to
preserve the realistic and high-resolution aspects of the NOAA RMTA time series in
the future, to reduce uncertainties in future fire behavior and in recognition that future
winds are likely to change far less significantly with climate change than other weather
parameters [32,33]. The ELMFIRE fire behavior model is necessarily very sensitive to winds,
and downscaled climate model results have difficulty resolving the local and orographic
effects in the wind fields to a sufficient fidelity to support such fire models [36]. Even if
they captured the spatial variability adequately, the high-resolution winds generated by
an atmospheric model driven by boundary conditions generated from the climate model
outputs would still require extensive verification and validation to be able to use them
for our simulations and justify the results. Since the goal is not to recreate any particular
fire event, but to use the weather time series to support a range of conditions suitable for
Monte Carlo simulation, we concluded that holding the winds constant from the 2011–2020
time series to drive 2052 fire behavior would be a reasonable approach.

With winds held constant, the other 2022 weather variables underwent scaling to create
a 2048–2057 hourly times series used to derive the 2052 wildfire hazards. The MACAv2
downscaled CMIP5 RCP4.5 outputs at daily resolution were used to scale the RTMA hourly
time series of air temperature, relative humidity, and precipitation by computing bias
adjustments between the present-day 2022 and forecast 2052 conditions (Appendix D).
The biases were distributed throughout the day via gamma distribution to maintain the
diurnal signal in precipitation and humidity, while allowing for the overall scaling to be
representative of the climate change impacts on these variables. Extreme values in biases
were adjusted inward (towards the center of the distributions) to allow for consistent
statistics, while preserving the general climate variability. Air temperature adjustments
at the hourly resolution were likewise adjusted with a simpler gaussian distribution that
brought daily average values of the 2011–2020 RTMA hourly time series in line with the
future 2048–2057 MACAv2 daily values.

The result for the 2052 weather time series is a 10-year duration, hourly resolution rep-
resentation of the estimated future weather conditions at 2.5 km horizontal resolution that
are characterized predominately by 1.7–2.8 deg C (3–5 deg F) average warmer temperatures
across CONUS. This allows the impact of higher air temperatures from climate change
on fuel conditions in 2052 to be largely isolated and evaluated, since winds and fuels are
both held constant from 2022. The greatest deficiency of this approach is that it is not
possible to evaluate the climate impacts of geographically coherent but temporally variable
features, such as more severe or longer droughts, or greater incidences or intensities of
atmospheric rivers or hurricanes. As such, these estimates are limited almost entirely to the
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effects caused by higher air temperatures on fuel conditions, and so must be considered
an underestimate of the total possible effects of climate change on wildfire probability.
Subsequent versions of this model are intended to address these deficiencies.

4. Ignition and Spatial Fire Occurrence Patterns

One of the primary indicators of where future fires will occur is informed through
historical fire occurrence data. The spatial component of the fire occurrence model is built
from the Fire Occurrence Database (FOD; https://www.fs.usda.gov/rds/archive/Catalog/
RDS-2013-0009.5, accessed on 1 June 2022) developed by the USDA Forest Service [37,38].
The FOD includes 27 years (1992–2018) of fire occurrence data, encompassing 2.17 million
georeferenced wildfire records that total 165 million acres burned. Following the best
practices for annualized burn probability modeling [18], this database was filtered to
remove small fires, defined as those that are less than 100 acres (Class A, B, and C fires).
We acknowledge the choice of the 100 acre cutoff is somewhat arbitrary, and different
thresholds (e.g., 300 acres [18], 247 acres [39]) have been used in other research and models,
but was chosen as a convenient approximation of the typical scale of wildfires whose
growth are often limited by human fire suppression activities.

A recognized best practice is to develop an ignition density grid using a kernel density
tool [18]. The ignition density kernel formula used (see equation below from [40]) was
implemented in the wildfire behavior model to generate the ignition density grid for this
work, where r is the search radius (bandwidth) and di is the distance from point i to the
centroid of a given cell.

Density =
1
r2

Σn
i=1

3
π

x (1− (
di
r
)

2
) f or di < r (2)

Modeling Temporal Fire Occurrence Patterns

The previous section describes how the spatial fire occurrence is modeled, but it
does not address when large fires may occur. One of the strongest predictors of temporal
occurrence of both the number of large fires and acres burned is the National Fire Danger
Rating System (NFDRS) Energy Release Component (ERC) percentile based on fuel model
G, or ERC(G)’ [41] (note ERC(G) refers to raw ERC values (Btu/ft2) and ERC(G)’ refers to
ERC percentiles). ERC is 4% of the energy per unit area (Btu/ft2) that would be released
during a fire. ERC depends on live and dead fuel loading by size class (as characterized by
an NFDRS fuel model), as well as fuel moisture content of live and dead fuels. Although
NFDRS fuel model G, which shows the best correlation with fire occurrence and burned
area, contains loadings across all dead fuel size classes and live herbaceous/live woody
loadings, it has a heavy loading in the 1000-hr size class. For that reason, ERC(G) is
primarily a function of weather conditions over the preceding 45 days and can be thought
of as a measure of intermediate to long-term dryness and as it is calculated solely from fuel
moisture content, ERC is not a function of wind speed, slope, or spread rate.

Fire occurrence is normally assessed in terms of ERC percentile, as opposed to raw ERC
(Btu/ft2), because ERC percentile shows better correlation with fire occurrence and size
than raw ERC, since the same amount of precipitation that corresponds to wet conditions
in one region may correspond to dry conditions in another region.

log10 n = 0.02768 × ERC (G)′ − 0.2333 (3)

Figure 7 shows the number of large fires in the Western US as a function of ERC(G)’.
The data in Figure 7 are demonstrably well-fit (R2 = 0.94) by the correlation in the equation
above [41], which is used in the wildfire behavior model to calculate fire occurrence
from ERC(G)’.

https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.5
https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.5
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Riley et al., 2013 [41]).

5. Wildfire Behavior Model

In the development of the FSF-WFM, we employed the open-source wildfire behavior
model, ELMFIRE, which is a highly parallelized model that was used to both simulate fire
spread and quantify the wildland fire hazard via Monte Carlo simulations. ELMFIRE is a
Rothermal-based, level set model used to track boundaries across the landscape based on
the numerical solutions of [42] and is fully described in Lautenberger [43].

The overall fire hazard and probability modeling methodology, as shown graphically
in Figure 8 and described in this section, is based on the work of Finney et al. [44], best
practices described by Scott et al. [18], and a relatively recent review of simulation-based
burn probability modeling [45]. Consequently, the contribution of this work is not devel-
oping new techniques or approaches to fire probability and hazard modeling, but rather
implementing computationally efficient and scalable modeling techniques based on ex-
isting fire probability and hazard modeling paradigms pioneered by the aforementioned
authors. These scalable computing techniques make it possible to conduct CONUS scale
fire probability and hazard simulations at 30 m resolution in a reasonable amount of time,
using commodity-style computational resources. The CONUS domain was subdivided
into 48 km by 48 km tiles, which were likewise surrounded by 8 similar tiles in a 3 × 3 grid
pattern, to aid in the distributed compute workflow.

Inputs to ELMFIRE include fuels, weather time series, and ignition locations. The
ignition locations were based on historical (1992–2018) fire locations described in the
previous section, and limited to fire sizes of greater than 100 acres. This limitation allows
the implicit inclusion of the effect of human-driven fire suppression activities in the model
output to create a “real world” estimate of fire exposure—i.e., wildfires that are actively
prevented from growing large. For example, the State of Rhode Island has exhibited
remarkable fire suppression over the past decades and has been able to eliminate all fires
over 100 acres during the 1992–2018 time period, driving the effective burn probability in
Rhode Island to zero for all properties in our simulations.
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presence and is available for viewing for every property in the U.S. at riskfactor.com (accessed on
8 August 2022).

For each ignition location, a weather “draw” was randomly selected for that fire
that would be carried forward many hours in simulation, and could extend anywhere in
the 3 × 3 (144 × 144 km) tile domain. Those simulated fires that grew to sufficient size
(100 acres) were tracked and the locations, fire length, and durations were noted. This
process was repeated over 100 million times, and resulted in approximately 8–10 million
tracked fires of significance per simulation (2022 and 2052). The result is a statistically
well-characterized set of simulated wildfires, from which the probabilistic exposure of
properties and buildings to wildfire hazard based on likelihood (i.e., burn probability),
flame length (i.e., intensity), and ember cast may be derived. The likelihood of a 30 m
pixel burning is the number of times that the pixel had ignited over the course of all the
simulations. The flame length is a measure of fire intensity, captured as binned flame
lengths (see Table 2) over the distribution of all fires within the pixel, and may be expressed
as the mean, median, or maximum flame length. The ember cast is a binned measure of the
number of times embers, pushed ahead of a simulated fire by the fire weather time series,
land in a pixel and results in an ignition of the fuels in that pixel.

5.1. Fire Spread Model

The 2D fire simulator ELMFIRE is used here to drive a stochastic fire spread analysis
that is used to generate the CONUS burn probability and hazard estimates. ELMFIRE’s
computational engine is similar to other two-dimensional fire simulators, such as FAR-
SITE [46], in that it calculates surface fire spread rate using the Rothermel surface spread
model [47,48], assumes that each point along the fire front behaves as an independent
elliptical wavelet [49], with length to breadth ratio determined empirically [48,50], simu-
lates transition from surface to crown fire using the Van Wagner criterion [51] (with crown
fire spread rates calculated from Cruz et al. [52]), and models ember-driven ignition or
“spotting” as a stochastic process with lognormal spotting distance distribution [53,54].
ELMFIRE tracks the fire front using a narrow band level set method [55], a numerical
technique for tracking curved surfaces on a regular grid.

riskfactor.com
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Table 2. Hazards quantified by the FSF-WFM: following the ELMFIRE simulations for 2022 and 2052,
the wildfire hazard for any 30 m pixel within the CONUS domain is represented by the combination
of the burn probability, mean or maximum flame length (intensity), and exposure to embers.

Measure of Exposure Description Units

Burn probability Likelihood that a pixel catches fire out of all the
simulations normalized by likelihood of ignitions %

Max flame length Maximum flame length experienced at a pixel
across all simulations ft

Sum of flame length Sum of flame length for all simulations that
experience fire ft

Mean flame length Sum of flame length divided by times burned ft

Binned counts of flame lengths (0,2,4,6,8,12,20,+) ft

Ember lux

Dimensionless number that is a proxy for the
count of embers landing in a pixel. Does not
reflect mass of embers, whether they are still

burning, or distance traveled

<none>

Ember likelihood Likelihood that an ember falls into a pixel across
all simulations, similar to times burned %

Max embers Max number of embers count

To demonstrate how ELMFIRE simulates fire spread, Figure 9 shows 24-h of fire
progression from an individual ignition site. The black contour lines in Figure 9a represent
the fire front position at 2-h intervals. Figure 9a also shows which parts of the burned
area experienced surface fire (blue), passive crown fire (green), or active crown fire (red).
Figure 9b similarly shows fire perimeter contours and flame length variation within the fire
perimeter. Flame length is highest in the areas that burn as heading fires or that experience
crown fire and lowest in the areas that burn as a flanking, backing, or surface fire. In this
example, the fire area after 24 h of spread is approximately 560 acres.

The Monte Carlo fire spread analysis conducted here involves running millions of
fire spread simulations (similar to that shown in Figure 9) sequentially over many years
(2011–2021, and 2048–2057), and across all tiles in the CONUS domain. Each tile is a 144 km
by 144 km tile within CONUS, consisting of a 48 km central tile surrounded by its eight
neighboring tiles of the same size. For each year and tile, fuel, topography, and yearly
weather, fuel moisture, and ERC percentile inputs are assembled. Starting at the beginning
of the simulation year, ignition locations are determined using the spatial and temporal fire
occurrence modeling techniques described earlier. Fires are ignited only in the central 48
km tile, but are allowed to spread into the adjacent eight tiles within the simulation. The
progression of each fire is modeled for a randomized spread duration up to 7 days from
the time of ignition, to roughly approximate the varying duration of the observed wildfires.
For each pixel within the modeled fire perimeter, the burn incidence is recorded, and the
binned distributions of discrete ember count and flame length are also recorded for each
pixel. This ignition-burn-record process is repeated for each day in each simulation year,
building up the probabilistic estimates of burn probability, flame length, and ember spread.
Since fires can start in one tile and spread to adjacent tiles, each tile is post-processed
concurrently with its eight neighbors.
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The primary outputs after processing are conventional annualized wildfire hazard
maps at 30 m resolution within CONUS, composed of the following elements:
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• Burn probability—an estimate of the likelihood that a region on the landscape burns
in any single year during the simulation period.

• Fire intensity—the distribution of conditional (i.e., upon burning) flame lengths for
each pixel, within discrete flame length bins.

• Exposure to embers—similar to fire intensity, a distribution of ember exposure per
pixel to characterize the relative intensity of ember exposure from all modeled fires.

5.2. Validation

To validate the results from the fire behavior model, we compared the model fires
against historical fires’ intensity and size in aggregate. Example results from a tile-by-tile
comparison of modeled and historical fires are generated as each geographic tile is run,
as shown below. The modeled fire sizes are larger than in the FOD because (a) there is
no fire suppression element applied within ELMFIRE, and the (b) simulation end time
was randomized. To partially compensate for these limitations, as stated previously, the
ignition layer was limited to sources of historical fires that were a minimum of 100 acres.
This assumes that suppression measures would be effective in keeping such fires small,
and of short duration. The resulting comparison of the modeled fires’ sizes and intensities
(Figure 10) shows that the modeled fires without explicit suppression and with randomized
durations up to 7 days are systematically larger than the observed wildfires. The area of
non-zero burn probabilities in the resulting hazard layers should, therefore, be considered
an overestimate of the likely range of wildfire spread, which creates distributions that err
on the side of caution when understanding wildfire exposure (i.e., there are likely fewer
false negatives). The introduction of active fire suppression within the model is the subject
of further research and may be incorporated into future versions.

Fire 2022, 5, x FOR PEER REVIEW 19 of 47 
 

 

 
Figure 10. Historical and modeled fire sizes (in acres) versus intensity (flame length in ft). 

6. Results 
The construction of a national-scale, property-specific wildfire hazard model using 

an open-source fire behavior model, driven by openly available inputs, has been proven 
possible by our development of the FSF-WFM. The ability to extend the wildfire hazard 
into the WUI by replacing nonburnable LANDFIRE fuel designations with estimates de-
rived from historical fire behavior in WUI areas was also shown to be feasible. Using the 
model in a Monte Carlo simulation, driven by historical ignition locations across CONUS 
to provide 30 m-resolution hazards, it was shown to be practical using commodity-scale 
computing hardware. This same scheme was shown to be applicable to both current (2022) 
and future (2052) scenarios, given the future estimates of climate-adjusted weather condi-
tions. 

The results of the FSF-WFM model implementation are freely and publicly available 
through riskfactor.com, (accessed on 8 August 2022) and show property-by-property as-
sessments of exposure to wildfire hazard. Figure 11 shows a representative parcel from 
the over 143 million available, and shows the levels of resolution and discrimination 
among properties that are available. These results are summarized at the state level in 
Tables 3 and 4, and Figure 12A,B, which will be discussed in more detail below. 

Table 3. Top 25 state ranking by “any risk” (cumulative burn probability of >1%). 

State Total Properties Any Risk Pct Any Risk 
Texas 11,957,707 9,450,091 79.03 

Florida 8,975,280 7,197,685 80.19 
California 11,341,383 7,131,849 62.88 

North Carolina 5,451,278 3,126,130 57.35 
Alabama 3,019,300 2,727,455 90.33 
Georgia 4,413,839 2,482,091 56.23 
Arizona 3,225,763 2,463,019 76.35 
Virginia 3,795,418 2,265,927 59.70 

South Carolina 2,616,091 2,068,048 79.05 
Colorado 2,491,610 2,000,321 80.28 

Oklahoma 2,215,755 1,901,850 85.83 
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6. Results

The construction of a national-scale, property-specific wildfire hazard model using
an open-source fire behavior model, driven by openly available inputs, has been proven
possible by our development of the FSF-WFM. The ability to extend the wildfire hazard into
the WUI by replacing nonburnable LANDFIRE fuel designations with estimates derived
from historical fire behavior in WUI areas was also shown to be feasible. Using the model in
a Monte Carlo simulation, driven by historical ignition locations across CONUS to provide
30 m-resolution hazards, it was shown to be practical using commodity-scale computing
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hardware. This same scheme was shown to be applicable to both current (2022) and future
(2052) scenarios, given the future estimates of climate-adjusted weather conditions.

The results of the FSF-WFM model implementation are freely and publicly available
through riskfactor.com, (accessed on 8 August 2022) and show property-by-property assess-
ments of exposure to wildfire hazard. Figure 11 shows a representative parcel from the over
143 million available, and shows the levels of resolution and discrimination among prop-
erties that are available. These results are summarized at the state level in Tables 3 and 4,
and Figure 12A,B, which will be discussed in more detail below.
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Figure 11. From riskfactor.com, (accessed on 8 August 2022): (bottom) a representative description of
property-level exposure (in Naples, FL), showing the high-resolution, property-specific nature of the
estimates that are produced by the FSF-WFM. Colors depict the probability (%) at 30 m resolution of
being impacted by wildfire hazard during the year 2022. The likelihood numbers at right are estimates
of annual likelihood of wildfire for the property at the red pin (center), and which is predicted to
more than double by 2052. (Top) CONUS burn probability at 30 m resolution for 2022; gray areas
show areas with negligible exposure.
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Table 3. Top 25 state ranking by “any risk” (cumulative burn probability of >1%).

State Total Properties Any Risk Pct Any Risk

Texas 11,957,707 9,450,091 79.03
Florida 8,975,280 7,197,685 80.19

California 11,341,383 7,131,849 62.88
North Carolina 5,451,278 3,126,130 57.35

Alabama 3,019,300 2,727,455 90.33
Georgia 4,413,839 2,482,091 56.23
Arizona 3,225,763 2,463,019 76.35
Virginia 3,795,418 2,265,927 59.70

South Carolina 2,616,091 2,068,048 79.05
Colorado 2,491,610 2,000,321 80.28

Oklahoma 2,215,755 1,901,850 85.83
Tennessee 3,278,739 1,879,316 57.32

New Jersey 3,449,541 1,859,395 53.90
Mississippi 1,904,494 1,695,462 89.02
Arkansas 1,923,556 1,558,005 81.00
Missouri 3,191,502 1,503,143 47.10

Minnesota 2,964,708 1,472,206 49.66
New Mexico 1,495,392 1,380,736 92.33

Louisiana 2,365,207 1,254,936 53.06
Utah 1,363,463 1,153,356 84.59

Kansas 1,633,521 1,087,988 66.60
New York 5,376,613 999,217 18.58

Washington 3,031,769 996,960 32.88
Oregon 1,807,336 911,745 50.45
Idaho 1,036,925 878,068 84.68

Table 4. Top 25 state ranking by “major risk” (cumulative burn probability of >3%).

State Total Properties Major Risk Pct Major Risk

California 11,341,383 2,554,777 22.53
Texas 11,957,707 1,686,571 14.10

Florida 8,975,280 1,540,413 17.16
Arizona 3,225,763 998,241 30.95

Oklahoma 2,215,755 451,928 20.40
Utah 1,363,463 425,163 31.18

New Mexico 1,495,392 409,538 27.39
Nevada 1,209,308 314,203 25.98
Idaho 1,036,925 196,014 18.90

Washington 3,031,769 187,275 6.18
Colorado 2,491,610 177,081 7.11

New Jersey 3,449,541 171,568 4.97
Montana 894,052 167,040 18.68

South Dakota 666,388 164,702 24.72
Mississippi 1,904,494 121,367 6.37
Wyoming 339,209 113,570 33.48

North Carolina 5,451,278 96,774 1.78
Kansas 1,633,521 81,309 4.98
Oregon 1,807,336 70,680 3.91

Alabama 3,019,300 53,726 1.78
Nebraska 1,138,191 50,150 4.41

South Carolina 2,616,091 46,292 1.77
North Dakota 679,023 33,737 4.97

Louisiana 2,365,207 23,783 1.01
Minnesota 2,964,708 19,929 0.67
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Figure 12. (A) Geographic distribution of “any exposure” to wildfire (>1% cumulative exposure):
those individual properties with >1% cumulative exposure over 2022–2052 were counted on a state by
state basis, and compared to the total number of all properties. (B). Geographic distribution of “major
exposure” to wildfire (>3% cumulative exposure): those individual properties with >3% cumulative
exposure over 2022–2052 were counted on a state by state basis, and compared to the total number of
all properties.
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The spatial variability in the distributions of the hazard at 30 m resolution, including
within the WUI and the prevalence of hazard in the Eastern as well the Western U.S.,
highlight the importance of understanding wildfire risk at a property level across CONUS.
While this paper focuses on the methodology and defers a thorough analysis of results
to a later study, we present some general results to provide the reader with a sense of
feasibility of the FSF-WFM to address current and future wildfire exposure. Overall, the
results estimate that 71.8 million properties have a burn probability of >0 in the current
environment (2022) and that probability increases by 11% over the next 30 years, and grows
to 79.8 million properties in CONUS in 2052. Many of those properties have low, but not
zero, burn probabilities from the model so we choose to describe two general levels of
wildfire hazard based on a cumulative burn probability of 3% over the 30-year period,
which we label “any exposure”, and a cumulative likelihood of 10% over the 30-year period,
which we label “major exposure”. When looking at those two categories, we find about
20.2 million properties in the CONUS being subject to “any exposure” and 5.9 million
properties being at “major exposure” to wildfire over the 30-year period (2022–2052). These
property counts represent about 15% and 5% of all property parcels in the CONUS, which
further highlights the large exposure of properties in the US to wildfire exposure. For
further context, flooding, which is generally referred to as the most widespread climate
peril in the US, impacts about 21.8 million properties at the “any flood” level (equivalent
to 6% 30-year aggregate) and about 14.6 million properties at the “significant flood” level
(equivalent to 26% 30-year aggregate) [56].

7. Any Exposure

Table 3 and Figure 12A report the results of the model when applied against individual
property structures and parcel centroids (on parcels without buildings). The results indicate
that the top five states in regards to “any exposure” are Texas, Florida, California, North
Carolina, and Alabama. In those 5 states alone, there are nearly 30 million properties with
at least a 1% cumulative probability over the next 30 years of being impacted by a wildfire.
Figure 12A (upper) further illustrates that the distribution of properties “any exposure”
of wildfire are disproportionately located in Texas, California, and the Southeastern US.
When taking into account “any exposure” of wildfire relative to the total housing stock
in Figure 12A (lower), the Mountain West states of Montana, Idaho, Wyoming, and Utah
emerge as a cluster of disproportionate potential impact, along with New Mexico, Okla-
homa, Mississippi, and Alabama across the southern tier of the country. The Midwest
and Northeast are relatively lower in regards to “any exposure” to wildfire over the next
30 years, which is expected given the climate conditions that generally drive the peril.

7.1. Major Exposure

Table 4 and Figure 12B report the results for only those properties at “major exposure”
to wildfire (3% cumulative likelihood over the 30-year period). When only looking at
this subset of properties, California stands out as having the most exposure, with over
2.5 million properties in this category. Texas, Florida and Arizona, at 1.7, 1.5, and nearly
1 million properties at “major exposure”, respectively, together with California, account
for over 6.5 million properties that meet the threshold of having at least 3% cumulative
wildfire exposure over the next 30 years. Figure 12B (upper) highlights the fact that when
shifting from “any exposure” to “major exposure”, the majority of that exposure is held in
the Western US, with Florida, Mississippi, New Jersey, and North Carolina standing out as
states in the eastern half of the country with higher levels of exposure than the surrounding
areas. Figure 12B (lower) shifts that impact slightly when accounting for the exposure as
a proportion of properties in the state. Using that metric, Arizona, Utah, and Wyoming
carry the most exposure to wildfire hazard, followed by their western neighbors, California
and Nevada.

The estimated geographic distribution of change in wildfire exposure due to climate
change is shown in Figure 13. The percentage increase between the current year and
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30 years into the future in the average burn probabilities of properties with at least 0.03%
risk is at least 100% in many of the counties across the country. The annual burn probability
of 0.03% corresponds to at least a 1% cumulative likelihood over a 30-year period. With
higher burn probabilities, a higher incidence of losses is expected over time, as properties
are exposed more often to wildfires.
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Finally, a fire factor risk assessment was created on a property-level basis across
CONUS. Property parcel geometries are provided by the Lightbox public-record property
boundaries database. Building footprint geometries are defined by Mapbox. First Street
performed a geometric intersection to match parcels to building footprints. Footprints
that cross parcel boundaries were subdivided, such that no footprint geometry crosses
parcel boundaries. Since some parcels intersect multiple footprint geometries, the building
footprint with the largest area was designated the primary footprint.

To evaluate the exposure to wildfire flames and embers, each hazard layer was queried
at the geometric centroid of each building footprint and parcel. For scoring purposes, at
properties with a building footprint, the statistic at the primary footprint centroid was
recorded; for parcels without a building footprint, the parcel centroid was recorded. The
assignment of a 30-year, climate-adjusted aggregated wildfire risk score was then computed
by calculating the likelihood and nature of exposure through burn probabilities in and
belongingness to an ember zone for a building or parcel as representative of the risk for
each property for 2022 and then for 2052, and then linearly interpolating this across that
30-year period.

The annual risk, as defined by burn probability in and belongingness to an ember
zone for each year, was summed across the 30-year period and was used to derive the total
chance of exposure over that 30-year period, which includes climate change effects. The
fire factor scoring rubric is included in Table 5.
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Table 5. Fire factor assignment.

Fire Factor Criteria

1
No modeled exposure of being in a wildfire (burn probability) and no

modeled exposure to embers (including not being in an ember zone) are
considered to have minimal risk.

2 Located in areas exposed to embers through the created ember zone or in
an area with less than a 1% cumulative chance of burning over 30 years.

3 With 1–3% chance of burning over 30 years.
4 With a 4–6% chance of burning over 30 years.
5 With a 7–9% chance of burning over 30 years.
6 With a 10–14% chance of burning over 30 years.
7 With a 14–20% chance of burning over 30 years.
8 With a 21–26% chance of burning over 30 years.
9 With a 27–36% chance of burning over 30 years.
10 With more than a 36% chance of burning over 30 years.

7.2. Assumptions and Limitations

The wildfire hazard estimates from the methodology described in this research paper
offer insights into the current and future wildfire exposure at 30 m resolution across
CONUS, using widely accepted input layers from LANDFIRE and using the Rothermal-
based ELMFIRE fire behavior model that has already undergone peer-review and validation.
The resulting estimates of wildfire hazard exposure provide a first view of national level,
high precision, property-level exposure estimates across the US in a framework that takes
into account both current and future changing exposure to wildfire. The results identify at
least some level of exposure in many places that are generally not thought of as having a
wildfire problem, but they also underscore the fact that there is a tremendous amount of
“major exposure” in the Western US, and specifically in the WUI areas in California and
the Mountain West States. These insights are intended to complement the work carried
out by the WRC program by providing a property-level equivalent to the community level
tool already in the public domain, using similar but independent Rothermel-based fire
behavior modeling. Nevertheless, there are a number of acknowledged limitations in our
methodology, many of which have already been noted, but the implications of which are
discussed in the following list:

• Lack of explicit fire suppression: since the fire behavior model ELMFIRE does not
explicitly include suppression effects, the model tends to overestimate the size and
intensity of wildfires, which leads to an overestimate of the extent of wildfire exposure.

• Variable length of wildfire burn time: ELMFIRE randomizes the length of the time for
each modeled wildfire, leading to overestimates in the size and intensity of wildfires.
The amount of time and the number of simulated fires needed to drive the Monte Carlo
simulation towards stable statistics varies geographically across the model domain.

• Extremely large fires: the simulation method does not capture the behavior of ex-
tremely large fires, since the fire weather forcing the simulation is not coupled with
the fire behavior model.

• House to house ignition: while the replacement of the non-burnable fuels in the LAND-
FIRE representation of the WUI with estimates of burnable fuels allows wildfires to
propagate through the WUI more accurately, the ignition and subsequent contribution
to wildfire by the buildings/houses themselves to the hazard within the WUI is not
yet included in FSF-WFM.

• Vegetation changes: the vegetation between 2022 and 2052 was held constant, although
it is anticipated that changes in vegetation composition and density, and thus fuels,
will be driven to some degree by climate change. Keeping the 2022 fuels constant
for the assessment of 2052 future exposure underestimated the total possible changes
due to the climate, but focuses attention on the direct effects of the climate and future
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weather on the state of those fuels, which has significant implications for wildfire
ignitions, intensity, and spread.

• Future weather approximation: A comprehensive sensitivity analysis to the bias-
adjustment techniques used for climate adjustment is warranted. In addition, the
high quality of the winds in the 2048–2057 simulations (the same as the 2011–2022
observations) is an advantage over using modeled winds, but is nevertheless an
assumption. Most importantly, since the length and severity of droughts captured in
the 2011–2020 time series do not change for the 2048–2057 simulation, the possible
impact of those droughts, as they increase in frequency and severity, is unresolved.

• Incomplete fuels/disturbances for fuel updates: disturbances are not evenly reported
across the US, and some areas (e.g., private lands in the Eastern US) are not well known.

• Ignition locations: using only historical fire ignition locations limits the possible
impact of climate change on plausible fire locations, and the omission of random
lightning strikes leaves some areas under-sampled. Additionally, a nuance of the
decision to build the ignition density surface from only >100 acre fire occurrence data
is that ignition density will be zero in areas that have not experienced fires >100 acres,
even if those areas have experienced fires <100 acres. Dillon et al. [39] noted that
in areas where management strategies have previously been successful at limiting
large fire occurrence, burn probability modeling based only on large fire occurrence
may underestimate burn probability. For that reason, Dillon et al. [39] developed
an ignition density surface weighted as 98% large fire occurrence and 2% small fire
occurrence, and such an approach could likely be used in future work.

• No future land use changes: to focus on the impacts of climate change on the existing
parcels under future wildfire exposure, we have elected to keep the built environment
constant, and to assume no changes in land use or condition. This simplifying assump-
tion is useful for its stated purpose, but we also recognize that changes in land use
will also precipitate changes in likely future ignition locations, WUI locations, fuel
conditions and types.

8. Discussion and Concluding Points

The methodology presented computes the physical hazard associated with wildfire
incidence for the contiguous United States at 30 m resolution, and is expressed through
hazards quantifying burn probability, flame length, and ember spread for the years 2022
and 2052, based on 10-year representative Monte Carlo simulations of wildfire behavior.
This methodology uses updated fuels estimates that integrate known disturbances, current
and estimated future weather characteristics that are useful for understanding aggregate
wildfire exposure at a high resolution, and uses a model of wildfire behavior that inte-
grates ignition, time of burn, and spread. This work does not develop new techniques or
approaches to fire probability and hazard modeling, but rather integrates several existing
methods and implements a computationally efficient and scalable modeling techniques to
allow for new high-resolution, CONUS-wide hazard generation—all based on existing data,
fire science, and hazard modeling paradigms developed by others in the wildfire science
community. We have extended these approaches to estimate not only updated, current
wildfire hazards but also extending those to estimate climate change’s future impacts on
these hazards.

The methodology for the augmentation of the US Forest Service’s LANDFIRE-based
estimates of fuel types, densities, and conditions at a 30 m resolution is presented using an
open-source, Rothermel-based wildfire behavior model, ELMFIRE, for computation. The
replacement of non-burnable fuel types in LANDFIRE that represent the built environment
within the wildland–urban interface (WUI), with fuel inputs from the results of machine-
learning estimates trained on data from historical fires, allow the propagation of wildfire
through the WUI in a way that more closely resembles the observed conditions, and often
results in non-zero burn probabilities for these areas. This serves as a notable improvement
and opportunity for future fire models to replicate such an approach to improve their
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modeling. The wildfire hazard derivation overall is heavily dependent upon the updated
LANDFIRE 2016 fuel layers, and significant effort was undertaken to assemble all known
disturbances throughout 2020. Combined, this provides a repeatable methodology for
future research looking to incorporate current fuel estimates, when annually updated
LANDFIRE data are not available.

Other inputs required for ELMFIRE include topography from the USGS National
Elevation Database, and weather (winds, air temperatures, humidity, and precipitation),
for which the 2011–2020 NOAA RTMA hourly time series was selected. This 10-year
time series provided an adequate range of possible weather conditions for the Monte
Carlo simulation, where ELMFIRE was run approximately 100 million times to produce
an estimate of the 2022 wildfire hazards for CONUS. To enable an estimate of the future
hazard, this same hourly time series was bias-adjusted using MACAv2 daily downscaled
IPCC CMIP5 RCP4.5 climate model ensemble results. Since accurate winds are crucial
to the accurate prediction of wildfire behavior, and winds have a direct and significant
influence on ELMFIRE results, we elected to hold winds constant between the 2022 and
2052 simulations, and bias-adjust only air temperature, humidity, and precipitation. This
choice reduced the uncertainties introduced into the hazards from the fire behavior model,
and instead focuses on the impact of climate change on the condition of the fuels for the
2048–2057 Monte Carlo simulations. Vegetation was likewise held constant between the
2022 and 2052 Monte Carlo simulations, as a reasonable but conservative approximation
over 30 years’ time. The differences in wildfire hazards in the 2052 estimates are then
based solely upon climate’s impact on the state of the fuels and generally hotter, drier
conditions are thought to influence greater burn probabilities in the 2052 estimates. Due to
the vegetation being held constant, these 2052 estimates should be considered conservative
estimates of future wildfire exposure.

Fire ignition locations for the simulations were kept the same for 2011–2020, as for
the 2048–2057 Monte Carlo simulations, and were created from the historical origins of
significant fires greater than 100 acres. This lower limit on fire size was used to implicitly
account for fire suppression activities that are not currently modeled in ELMFIRE. Over
100 million fires were modeled for each simulation period, and 8–10% of those model
fires grew and were tracked at 30 m resolution across the landscape for up to 7 days
apiece. Outputs were aggregated to create burn probability, flame length, and ember
spread hazard estimates at 30 m horizontal resolution for CONUS. These hazard estimates
are conducive to the assessment of the exposure of US properties to wildfire flames and/or
embers. Comparisons with historical wildfire intensities and sizes show that the lack
of explicit fire suppression effects in the FSF-WFM produces overestimates of fire sizes
and intensities, so the resulting wildfire hazards should be considered to be conservative
overestimates. Comparisons to historical wildfire losses and the US Forest Service’s WFC
products generally show consistency at the state and community levels, but additional
validation using historical losses at the building level should be undertaken in the future.
The FSF-WFM wildfire hazards will produce fewer false negatives of risk assessments
at the property level, and when combined with specific building vulnerability, could be
used to provide similarly conservative estimates of climate-adjusted wildfire losses at the
building level.

Wildfire hazards are estimated to be non-zero for 71.8 million of the over 140 million
properties in CONUS, and will include an additional 11% properties over the next 30 years,
due to climate change impacts on fuel conditions. While most of the overall wildfire risk is
associated with properties west of 100 degrees W longitude in the American West, much
of the change in wildfire exposure is observed east of the Mississippi River in areas not
normally associated with large wildfire exposure. Over 5.9 million properties are found to
have a “major” aggregate wildfire exposure of 10% over the 30-year analysis period from
2022–2052, which invites further investigation at the hyper-local level to discover ways to
mitigate that exposure. Since the fuels and winds have been held the same between 2022
and 2052 in our simulations, the implication is that any increase in wildfire exposure is
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due to the future weather’s increased impacts on fuel conditions. Thus the influence of
climate change on fuel conditions is the primary cause of the estimated increase in wildfire
exposure throughout the country.

The FSF-WFM represents the first national-scale, property-level wildfire exposure
model that has been developed using a geographically-consistent approach. The ability to
consistently assess wildfire exposure, and thus risk for every property across the CONUS,
should give local, state, and national government decision makers another data tool to
help guide the allocation of resources, allow property owners to better assess their risk and
implement meaningful solutions to reduce that risk, and provide financial markets with
the opportunity to price risk into the cost of property more effectively through insurance,
mortgage, and other financial products.
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Appendix A. Data Sources Used in the Development of the FSF-WFM

Name Subject Source

LANDFIRE Fuels LandFire.gov (accessed on 1 June 2022)

USGS NED Topography
https://www.usgs.gov/programs/national-geospatial-

program/national-map (accessed on 1 June 2022)

USDA Forest Service’s Fire
Occurrence Database (FOD)

Ignition Locations
https://doi.org/10.2737/RDS-2013-0009.5 (accessed on

1 June 2022)

MTBS, NIFC Historical fires
https://www.mtbs.gov and https://www.nifc.gov

(accessed on 1 June 2022)

NOAA RTMA Weather, 2011–2020

https://mtarchive.geol.iastate.edu/ and
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?

datasetname=9950_01&subqueryby=STATION&
applname=&outdest=FILE (accessed on 1 June 2022)

MACAv2 Climate MACA data portal (accessed on 1 June 2022)

Future 2052 Weather
Weather estimates for 2048-2057;

Derived from MACAv2 and
NOAA RTMA time series

derived

Future 2052 Fuels
Assumed to be same as 2022

for V1
Held constant

Property Boundaries Lightbox commercial

Building Footprints Mapbox commercial

Building Density
Derived from Building footprint

information
derived

Appendix B. Treatment Disturbance Inputs

Dataset Name Source Data Link

Hazardous Fuels Treatments—Fire—USFS
https://apps.fs.usda.gov/arcx/rest/services/EDW/
EDW_HazardousFuelsTreatments_01/MapServer/3

(accessed on 1 June 2022)

Hazardous Fuels Treatments—Other—USFS
https://apps.fs.usda.gov/arcx/rest/services/EDW/
EDW_HazardousFuelsTreatments_01/MapServer/4

(accessed on 1 June 2022)

Hazardous Fuels Treatments—Mechanical—USFS
https://apps.fs.usda.gov/arcx/rest/services/EDW/
EDW_HazardousFuelsTreatments_01/MapServer/5

(accessed on 1 June 2022)

Hazardous Fuels Treatments—All Other Values—USFS
https://apps.fs.usda.gov/arcx/rest/services/EDW/
EDW_HazardousFuelsTreatments_01/MapServer/7

(accessed on 1 June 2022)

Timber Harvest—USFS
https://apps.fs.usda.gov/arcx/rest/services/EDW/

EDW_TimberHarvest_01/MapServer/8 (accessed on 1
June 2022)

CALMAPPER Treatment Projects
https://egis.fire.ca.gov/arcgis/rest/services/

CalMapper/CalMAPPER_Public/FeatureServer/2
(accessed on 1 June 2022)

CALFIRE Priority Treatment Projects

https:
//services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/
rest/services/PriorityProjects2019/FeatureServer/0

(accessed on 1 June 2022)

CALFIRE Timber Harvest

https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/
ArcGIS/rest/services/CAL_FIRE_Timber_Harvesting_

Plans_All_WGS84/FeatureServer/0 (accessed on 1
June 2022)

LandFire.gov
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://doi.org/10.2737/RDS-2013-0009.5
https://www.mtbs.gov
https://www.nifc.gov
https://mtarchive.geol.iastate.edu/
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=9950_01&subqueryby=STATION&applname=&outdest=FILE
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=9950_01&subqueryby=STATION&applname=&outdest=FILE
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=9950_01&subqueryby=STATION&applname=&outdest=FILE
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/3
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/3
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/4
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/4
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/5
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/5
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/7
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/7
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_TimberHarvest_01/MapServer/8
https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_TimberHarvest_01/MapServer/8
https://egis.fire.ca.gov/arcgis/rest/services/CalMapper/CalMAPPER_Public/FeatureServer/2
https://egis.fire.ca.gov/arcgis/rest/services/CalMapper/CalMAPPER_Public/FeatureServer/2
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/PriorityProjects2019/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/PriorityProjects2019/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/PriorityProjects2019/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/CAL_FIRE_Timber_Harvesting_Plans_All_WGS84/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/CAL_FIRE_Timber_Harvesting_Plans_All_WGS84/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/CAL_FIRE_Timber_Harvesting_Plans_All_WGS84/FeatureServer/0


Fire 2022, 5, 117 30 of 44

Dataset Name Source Data Link

CALFIRE Fire Perimeters—Prescribed Fire
https://egis.fire.ca.gov/arcgis/rest/services/FRAP/

FirePerimeters_FS/FeatureServer/1 (accessed on 1
June 2022)

CALFIRE Forest Health CCI Awarded Projects 2017-18
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/

ArcGIS/rest/services/Forest_Health_CCI_Awards_2017
_2018/FeatureServer/0 (accessed on 1 June 2022)

Treatment areas—National Park Service
https://mapservices.nps.gov/arcgis/rest/services/

WildlandFire/WildlandFire/FeatureServer/5 (accessed on
1 June 2022)

Treatment areas—ID—BLM
https://navigator.blm.gov/api/share/e5fb96b234d32c5a

(accessed on 1 June 2022)

Treatment areas & Harvest—OR Dept Forestry
https://gisapps.odf.oregon.gov/data/

FernsNoapsPolygons.Zip (accessed on 1 June 2022)

Treatment areas—CA—BLM
https://navigator.blm.gov/api/share/a446b6874c2a37fc

(accessed on 1 June 2022)

Treatment areas—NM—BLM
https://gis.blm.gov/nmarcgis/rest/services/Range/

BLM_NM_Vegetation_Treatments/MapServer/0
(accessed on 1 June 2022)

Harvest—WA Dept Natural Resources

https:
//gis.dnr.wa.gov/site2/rest/services/Public_Forest_
Practices/WADNR_PUBLIC_FP_FPA/MapServer/6/

(accessed on 1 June 2022)

Appendix C. Fires Used to Estimate Fuels in WUI Areas

Incident Name State
Ignition

Date
Lat. Long.

Acres
Burned

Total
Structures
Damaged

Total
Structures
Destroyed

Total
Structures

Threatened

Shockey CA 9/23/2012 32.618 −116.335 2667 10 45 125
Bastrop County Complex TX 9/4/2011 30.13 −97.235 31,838 0 1709 1160

Pine Creek OR 7/14/2014 44.808 −120.273 31,033 0 0 16
Highway 613 Fire MS 10/31/2014 30.507 −88.526 635 0 0 30
Carlton Complex WA 7/14/2014 48.248 −119.96 276,091 0 471 1103

Mills Canyon WA 7/8/2014 47.626 −120.297 21,952 0 3 571
Anaconda UT 7/20/2014 40.562 −112.237 1142 0 0 30

High Range ID 8/3/2014 45.743 −116.493 5328 0 3 30
Happy Camp Complex CA 8/14/2014 41.707 −123.196 118,491 2 6 767

Knf Beaver CA 7/30/2014 41.89 −122.871 34,274 0 6 235
Snag Canyon WA 8/3/2014 47.167 −120.475 12,508 1 22 279
Johnson Bar ID 8/3/2014 46.096 −115.614 15,170 0 0 57

Rain ID 8/3/2014 45.583 −115.185 4772 0 0 4
Assayii Lake NM 6/13/2014 36.032 −108.844 13,176 0 5 50

Slide AZ 5/20/2014 35.009 −111.802 22,698 0 0 350
French CA 7/28/2014 37.294 −119.36 14,534 0 0 106

Way CA 8/18/2014 35.735 −118.461 3947 12 12 1500
Eiler CA 7/31/2014 40.799 −121.558 30,967 0 30 755

Taylor Mountain Road UT 7/5/2014 40.531 −109.573 2965 3 3 50
Triple G FL 5/9/2015 26.118 −81.591 736 0 0 0

Grand Lake FL 4/19/2015 25.75 −80.455 1368 0 0 11
Lime Hill OR 8/5/2015 44.37 −117.33 12,210 0 5 4
Dry Gulch OR 9/12/2015 44.829 −117.139 18,369 0 0 507

Mann ID 8/18/2015 44.263 −116.84 1527 0 0 30
Mm43 Hwy 52 ID 6/25/2015 43.977 −116.4 11,022 2 0 10

Celebration ID 6/6/2015 43.26 −116.497 7281 0 0 0
Soda ID 8/10/2015 43.319 −116.861 282,888 1 1 145

Sleepy Hollow WA 6/28/2015 47.455 −120.375 3238 27 35 0
I-90 WA 7/19/2015 47.013 −119.959 1397 0 0 20

Highway 8 WA 8/4/2015 45.802 −120.184 35,296 0 0 350

https://egis.fire.ca.gov/arcgis/rest/services/FRAP/FirePerimeters_FS/FeatureServer/1
https://egis.fire.ca.gov/arcgis/rest/services/FRAP/FirePerimeters_FS/FeatureServer/1
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/Forest_Health_CCI_Awards_2017_2018/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/Forest_Health_CCI_Awards_2017_2018/FeatureServer/0
https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/Forest_Health_CCI_Awards_2017_2018/FeatureServer/0
https://mapservices.nps.gov/arcgis/rest/services/WildlandFire/WildlandFire/FeatureServer/5
https://mapservices.nps.gov/arcgis/rest/services/WildlandFire/WildlandFire/FeatureServer/5
https://navigator.blm.gov/api/share/e5fb96b234d32c5a
https://gisapps.odf.oregon.gov/data/FernsNoapsPolygons.Zip
https://gisapps.odf.oregon.gov/data/FernsNoapsPolygons.Zip
https://navigator.blm.gov/api/share/a446b6874c2a37fc
https://gis.blm.gov/nmarcgis/rest/services/Range/BLM_NM_Vegetation_Treatments/MapServer/0
https://gis.blm.gov/nmarcgis/rest/services/Range/BLM_NM_Vegetation_Treatments/MapServer/0
https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_FPA/MapServer/6/
https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_FPA/MapServer/6/
https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_FPA/MapServer/6/
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Incident Name State
Ignition

Date
Lat. Long.

Acres
Burned

Total
Structures
Damaged

Total
Structures
Destroyed

Total
Structures

Threatened

Brown Ranch TX 8/11/2015 29.993 −100.428 17,881 0 3 22
County Line 2 OR 8/12/2015 44.829 −121.412 68,189 0 7 1452

Roosa Gap NY 5/3/2015 41.638 −74.421 2747 0 0 11
Pipeline 1 PA 5/3/2015 41.123 −75.677 666 0 0 0

North CA 7/17/2015 34.372 −117.474 4366 5 23 700
Gilmore Gulch WA 7/5/2015 46.16 −116.964 8074 0 0 11

Tucannon WA 8/29/2015 46.359 −117.678 2809 0 0 140
Ridge Road ND 4/14/2015 48.079 −103.09 3390 0 0 0
Powerline OK 1/26/2015 35.364 −95.884 1183 0 0 11
Highway CA 4/19/2015 33.907 −117.624 1212 0 0 252
Z Bar 7 OK 3/31/2015 36.664 −96.149 5908 0 0 0

2230 Road OK 4/4/2015 36.454 −96.158 2650 0 6 0
Wf West End 2015 TX 2/13/2015 29.588 −94.341 6590 0 0 0

Razor Fire PA 4/18/2015 40.779 −75.682 728 0 0 4
Boars Hammock FL 4/26/2015 26.885 −81.253 790 0 0 0

Tallgrass East KS 4/14/2015 38.41 −96.525 1745 0 0 0
Wf Texas Point Northeast TX 10/4/2015 29.705 −93.93 4635 0 0 0

Greenwood OK 3/23/2015 36.054 −96.319 5774 0 0 0
West Prong OK 3/24/2015 36.413 −96.064 3676 0 1 500

Trail 12 FL 5/5/2015 28.788 −82.366 1041 0 0 0
Station WY 10/11/2015 42.882 −106.18 9845 94 46 392

Big Spring Branch WV 11/17/2015 37.701 −81.825 1044 0 0 0
Little Horse Creek WV 11/17/2015 38.132 −81.851 1145 0 0 0

Little Jerrell WV 11/18/2015 37.985 −81.646 1193 0 0 0
Trace Fork WV 11/14/2015 37.434 −81.934 784 0 0 0

Kearny River AZ 6/17/2015 33.068 −110.92 1543 5 5 50
Willow AZ 8/8/2015 34.837 −114.544 6084 40 31 710
Goodell WA 8/11/2015 48.683 −121.227 6624 0 0 50

Stouts Creek OR 7/30/2015 42.859 −122.985 27,570 0 0 645
Route Complex CA 7/31/2015 40.601 −123.541 35,444 0 2 475

Grenade CA 4/29/2015 33.404 −117.514 1776 0 0 0
River Complex CA 7/31/2015 40.914 −123.364 78,531 0 0 506

Solimar CA 12/26/2015 34.303 −119.342 1083 0 0 103
Cuesta CA 8/17/2015 35.356 −120.612 2415 0 1 339
Parkhill CA 6/20/2015 35.367 −120.424 1795 5 18 100
Tassajara CA 9/19/2015 36.391 −121.589 1085 1 21 0
Lowell CA 7/25/2015 39.212 −120.869 2633 1 3 1800
Tesla CA 8/19/2015 37.636 −121.594 2508 0 1 0

Lumpkin CA 9/11/2015 39.527 −121.327 1137 0 0 200
Wragg CA 7/22/2015 38.481 −122.069 8455 5 2 700
Rocky CA 7/29/2015 38.91 −122.45 96,125 8 96 6959
Valley CA 9/12/2015 38.788 −122.613 77,507 95 2019 9150
Rough CA 7/31/2015 36.852 −118.884 146,369 0 4 1536

Washington CA 6/19/2015 38.642 −119.699 18,485 0 2 251
Butte CA 9/9/2015 38.266 −120.592 72,894 48 901 6400

Corrine CA 6/19/2015 37.179 −119.5 1064 0 3 250
Willow CA 7/25/2015 37.282 −119.479 5990 0 0 455

Cape Horn ID 7/5/2015 47.998 −116.521 1505 1 14 309
Slide ID 8/14/2015 46.096 −115.382 13,509 0 0 29

I-90 Sprague WA 8/1/2015 47.314 −117.934 1771 0 0 2
Carpenter Rd. WA 8/15/2015 48.05 −118.091 62,488 0 43 1005

Lawyer 2 ID 8/11/2015 46.23 −116.108 11,378 0 0 25
Municipal ID 8/15/2015 46.469 −116.19 1969 5 11 302
Woodrat ID 8/11/2015 46.167 −115.771 6513 0 0 81

Tepee Springs ID 8/12/2015 45.318 −116.116 94,878 0 6 1410
Eagle OR 8/11/2015 45.028 −117.373 14,502 0 1 52

Canyon Creek Complex OR 8/12/2015 44.301 −118.85 109,786 100 54 722
Black Canyon WA 8/14/2015 47.976 −120.053 61,379 0 0 0

First Creek WA 8/14/2015 47.929 −120.244 7971 22 19 556
Chelan Complex WA 8/14/2015 47.912 −119.846 21,774 1 55 2948

West Fork Fish Creek MT 8/14/2015 46.909 −114.804 14,495 0 5 372
North Star WA 8/13/2015 48.415 −118.94 218,547 0 1 4225

Marble Valley WA 8/14/2015 48.404 −117.892 3431 22 41 326
Renner WA 8/14/2015 48.758 −118.193 13,975 0 0 120
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Incident Name State
Ignition

Date
Lat. Long.

Acres
Burned

Total
Structures
Damaged

Total
Structures
Destroyed

Total
Structures

Threatened

Blue Creek WA 7/20/2015 46.037 −118.08 5990 0 12 250
9 Mile WA 8/13/2015 48.971 −119.296 5052 0 10 80

Limebelt WA 8/14/2015 48.507 −119.694 137,098 0 0 20
Hidden Pines TX 10/13/2015 30.081 −97.183 3807 2 141 406

Tunk Block WA 8/14/2015 48.478 −119.339 180,111 0 145 3000
Liberty Hill LA 10/13/2015 32.345 −92.907 711 0 3 12

Lake CA 6/17/2015 34.147 −116.762 30,421 0 4 7390
Sunland WA 5/29/2016 47.045 −119.99 1940 0 0 20
16 Mile PA 4/20/2016 41.199 −75.149 7896 9 11 287

Bear Town PA 4/20/2016 41.181 −75.222 649 0 0 0
Sams Point

Fire-Verkeerder Fire
NY 4/23/2016 41.681 −74.343 1929 0 0 7

Road 10 WA 8/2/2016 47.23 −119.357 2750 0 8 87
Elmer City WA 9/11/2016 47.978 −118.942 5619 0 1 140

Rocky Mtn Fire 2016 VA 4/16/2016 38.31 −78.665 9299 0 0 337
Fifteen Mile OR 7/1/2016 45.638 −121.006 4044 0 0 45

Range 12 WA 7/30/2016 46.495 −119.869 167,604 0 0 250
County Line Road Fire NC 3/10/2016 35.011 −79.513 1704 0 0 0

Mcbee Command WA 7/15/2016 46.249 −119.519 1813 0 0 20
Cellar Mountain VA 3/17/2016 37.93 −79.128 737 0 0 8
South Ward Gap WA 7/31/2016 46.177 −119.825 4184 0 2 100

Kahlotus WA 8/22/2016 46.645 −118.633 9386 0 4 30
Starbuck WA 7/18/2016 46.527 −118.087 2414 0 0 0

Eades Hollow VA 11/21/2016 37.775 −78.851 1564 0 0 17
Rattlesnake OR 7/24/2016 44.835 −121.118 9296 0 0 41
Table Rock ID 6/30/2016 43.591 −116.131 2481 1 2 100

Cottonwood Ca SD 10/16/2016 43.905 −101.862 41,775 0 2 0
Clifton ID 8/23/2016 42.159 −112.01 2356 0 0 20

Henrys Creek ID 8/21/2016 43.447 −111.765 52,988 0 8 125
Salvage ID 6/24/2016 42.8 −114.669 1847 1 0 11

Rock NV 7/29/2016 39.871 −119.896 2387 0 0 800
Metz CA 5/22/2016 36.387 −121.217 3826 0 0 5

Bug Creek AZ 6/28/2016 34.294 −112.117 1184 0 0 105
Longview AZ 6/6/2016 31.633 −110.548 1105 0 0 40

Ridge AZ 5/25/2016 31.529 −110.338 1391 0 0 53
Crutch TX 3/23/2016 35.615 −101.117 45,052 0 4 0
Optima OK 12/16/2016 36.692 −101.09 5084 0 0 0
Poplar NC 3/31/2015 36.106 −82.337 768 0 0 3

Chestnut Knob NC 11/6/2016 35.619 −81.657 6418 0 0 417
Horton NC 11/22/2016 36.146 −81.568 1480 0 0 325

Bench Bluff TN 11/12/2016 35.594 −85.242 1715 0 0 0
Pinnacle Mountain SC 11/9/2016 35.055 −82.721 7869 0 1 1136

Rd 80 KS 3/17/2016 38.164 −96.391 63,061 0 0 0
Bar-Dew Lake OK 3/19/2016 36.828 −96.039 14,806 0 0 62

Bear OK 2/17/2016 36.309 −96.17 5966 0 0 80
Pawnee Cove OK 2/18/2016 36.228 −96.411 3418 0 50 200

Pharoah OK 2/18/2016 35.535 −96.097 13,579 0 14 50
Sand Creek OK 2/18/2016 35.3 −96.104 3839 0 0 170

Double Header OK 3/6/2016 35.35 −96.083 1413 0 0 15
Katie OK 3/6/2016 35.258 −96.099 1573 2 0 35

Mustang OK 3/6/2016 36.669 −96.025 10,060 0 0 82
Hall Horn OK 3/16/2016 36.557 −96.298 5180 0 0 0

Walker OK 3/19/2016 36.354 −96.235 2340 0 0 0
Varsity OK 4/7/2016 35.728 −96.439 1216 0 0 55
Burmac KS 3/23/2016 38.087 −97.668 10,668 12 11 0

Burley Hill KS 4/5/2016 39.016 −96.645 16,381 1 0 0
Quinton Fire OK 2/17/2016 35.14 −95.399 1219 0 0 5
Mason Fire OK 2/19/2016 35.261 −95.473 1915 0 0 0

Round Prairie Road Fire OK 2/19/2016 34.677 −95.173 2858 0 0 0
Cyclops AL 11/5/2016 33.845 −87.033 660 0 0 4

Mount Pleasant VA 11/19/2016 37.738 −79.178 11,001 0 0 120
Gap CA 8/27/2016 41.856 −123.036 33,940 0 14 160

Willard CA 9/11/2016 40.378 −120.749 2828 0 7 625
Kewa Fire WA 8/2/2016 48.183 −118.284 1985 0 5 90
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Incident Name State
Ignition

Date
Lat. Long.

Acres
Burned

Total
Structures
Damaged

Total
Structures
Destroyed

Total
Structures
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Cayuse Mtn WA 8/22/2016 47.847 −118.038 9744 0 23 1535
Hart WA 8/21/2016 47.822 −118.125 2819 20 40 605
Whit WY 8/2/2016 44.409 −109.361 12,731 0 8 165

Cliff Creek WY 7/17/2016 43.296 −110.382 36,131 0 1 135
Chimney CA 6/1/2016 35.855 −118.025 1477 0 0 24
Erskine CA 6/23/2016 35.569 −118.334 48,066 75 286 2500
Cedar CA 8/16/2016 35.791 −118.571 29,191 0 12 2599
Slate CA 10/4/2016 36.082 −118.556 2121 0 0 0

Meadow CA 10/30/2016 35.975 −118.579 4346 0 0 0
Pioneer ID 7/18/2016 44.139 −115.585 189,596 0 6 465

Roaring Lion MT 7/31/2016 46.177 −114.248 8096 3 66 2347
Spokane Complex WA 8/22/2016 47.492 −117.289 6839 2 17 303

Sherpa CA 6/15/2016 34.497 −120.033 7549 0 5 271
Rey CA 8/18/2016 34.586 −119.725 33,323 5 5 301
Pilot CA 8/7/2016 34.308 −117.247 8267 0 0 5600

Blue Cut CA 8/16/2016 34.324 −117.506 36,856 8 321 611
Bogart CA 8/30/2016 33.986 −116.933 1475 0 2 426

Fish CA 6/20/2016 34.181 −117.939 4528 0 0 869
Deer CA 7/1/2016 35.222 −118.688 1885 0 0 300
Sage CA 7/9/2016 34.366 −118.574 1002 1 0 2500

Little Valley NV 10/14/2016 39.266 −119.839 2964 0 40 200
Cold CA 8/3/2016 38.536 −122.077 6289 0 2 52

Trailhead CA 6/28/2016 38.963 −120.83 5743 0 0 2600
Soberanes CA 7/22/2016 36.322 −121.701 132,380 5 68 2010

Sand CA 7/22/2016 34.391 −118.35 41,561 6 20 10,300
Clayton CA 8/13/2016 38.915 −122.587 3792 29 302 1500
Loma CA 9/26/2016 37.116 −121.818 4380 1 28 325

Border 3 CA 6/19/2016 32.611 −116.572 7958 3 17 1000
Mormon AZ 5/15/2016 34.961 −111.573 7897 0 0 0

Goose CA 7/30/2016 37.015 −119.466 2487 1 9 400
Tenderfoot AZ 6/8/2016 34.232 −112.708 4363 0 3 300

Curry CA 7/2/2016 36.087 −120.45 2837 0 0 25
Chimney CA 8/13/2016 35.738 −121.075 46,950 24 70 1898
Juniper AZ 5/20/2016 33.864 −110.926 32,293 1 0 141

Elk AZ 7/21/2016 34.174 −109.864 1965 0 0 0
Beaver Creek CO 6/19/2016 40.957 −106.505 44,221 0 17 131

Fulton AZ 9/12/2016 34.281 −110.89 3237 0 0 296
Beulah Hill CO 10/3/2016 38.07 −104.928 5769 0 14 750

Junkins CO 10/17/2016 38.14 −105.136 19,023 0 26 745
Topock AZ 4/6/2016 34.74 −114.51 1422 1 0 12

I40 TX 3/23/2016 35.244 −100.355 14,780 0 14 200
350 Complex OK 4/5/2016 36.647 −99.266 58,055 0 0 825

Anderson Creek Fire OK 3/23/2016 37.107 −98.835 374,523 0 54 10,000
Big Creek MO 2/13/2016 36.634 −92.83 4031 0 0 0
Bob White WV 4/3/2016 37.957 −81.7 824 0 0 10

Upper Conley Hollow WV 4/4/2016 37.889 −82.095 1438 0 0 0
Jimmie Creek Rd KY 10/26/2016 37.373 −82.386 500 0 0 0

Raven Rock VA 11/2/2016 37.172 −82.61 2273 1 2 104
Bridge Creek Road TN 10/30/2016 35.241 −85.559 1777 0 0 0

Spruce Pine Rd St Rt 7 KY 4/13/2016 37.522 −82.894 786 0 0 0
Little Shepherd Trail KY 10/26/2016 36.951 −83.113 6751 0 0 0

Big Branch KY 11/17/2016 37.062 −82.956 762 0 0 0
Poe Road TN 11/11/2016 35.261 −85.254 758 0 0 0
Mowbray TN 11/9/2016 35.286 −85.208 721 0 0 50
Bolts Br. KY 11/24/2016 37.087 −83.656 1069 0 0 0

Lake Chinnabee AL 11/28/2016 33.473 −85.871 1254 2 0 35
Caney Head AL 3/20/2016 33.391 −85.843 957 0 0 0

Halls Top TN 4/4/2016 35.875 −83.142 2464 1 1 71
Eagles Nest KY 11/2/2016 37.53 −83.392 2857 0 0 50

Jetts Creek Fire KY 11/6/2016 37.508 −83.563 3021 0 0 0
Bowlings Creek KY 11/21/2016 37.361 −83.43 1023 0 0 0

Moore Peach VA 4/10/2016 36.625 −82.986 1345 0 0 0
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Sr116 TN 11/3/2016 36.169 −84.318 2222 0 0 0
Charles Branch Lane TN 11/8/2016 36.204 −84.345 1071 0 0 0

Timber Ridge GA 11/12/2016 34.828 −83.363 1002 0 0 400
Neddy Mountain Road TN 11/11/2016 35.948 −83.072 788 0 0 150

Silver Mine NC 4/21/2016 35.908 −82.791 6082 0 0 15
Party Rock NC 11/5/2016 35.472 −82.241 8572 0 3 1050
State Line TN 4/16/2016 35.926 −82.922 1111 0 0 17

Sr116-Devonia TN 11/4/2016 36.116 −84.41 3077 0 0 0
Tellico NC 11/3/2016 35.299 −83.589 14,172 0 1 336

Maple Springs NC 11/4/2016 35.392 −83.932 7696 1 0 29
Dick’s Creek NC 10/23/2016 35.399 −83.249 833 0 0 31

Dobson 3 NC 11/8/2016 35.506 −83.244 741 0 0 50
Hwy 190 KY 11/2/2016 36.74 −83.724 957 0 0 0

Railroad Grade 2016 TN 4/18/2016 36.227 −82.113 1790 0 0 25
Kentucky Ridge KY 11/7/2016 36.686 −83.858 1133 0 0 0

Old Roughy NC 11/9/2016 35.371 −83.85 534 0 0 44
East Miller Cove TN 11/17/2016 35.744 −83.799 1331 0 0 100

Quarry Creek TN 11/16/2016 35.349 −84.281 643 0 0 9
Cobbly Nob TN 11/28/2016 35.779 −83.342 732 23 108 0

Stinking Creek TN 11/9/2016 36.453 −84.199 10,768 0 0 0
Boteler NC 10/25/2016 35.068 −83.673 8626 0 0 314
Knob NC 11/2/2016 35.114 −83.537 1132 0 0 0

Camp Branch NC 11/23/2016 35.179 −83.558 3234 0 2 140
Wild Goose LA 2/9/2016 31.406 −92.898 1260 0 3 20

Chimney Tops 2 TN 11/23/2016 35.687 −83.503 14,998 257 2066 2800
Knox Bell Line KY 10/29/2016 36.907 −83.605 1272 0 0 0
Rock Mountain GA 11/9/2016 34.99 −83.522 25,224 0 0 250

North Peak NC 3/23/2016 35.753 −81.986 680 0 0 2
Old 50 FL 9/27/2016 28.547 −80.906 804 0 0 1
Island FL 5/5/2016 29.318 −81.767 527 0 0 0
Skibo MN 5/6/2016 47.498 −92.044 763 0 0 110

Clear Creek NC 11/20/2016 35.72 −82.113 3493 0 0 392
Tombstone NC 3/8/2016 35.545 −81.725 1747 0 0 0
Chetco Bar OR 7/12/2017 42.238 −124.049 194,877 9 30 12,483

Helena CA 8/31/2017 40.775 −123.062 18,709 8 141 5350
Canyon CA 9/25/2017 33.861 −117.66 2740 6 0 1910

Canyon 2 CA 10/9/2017 33.823 −117.734 9102 58 26 5000
Minerva 5 CA 7/29/2017 39.903 −120.944 4545 0 0 395
Detwiler CA 7/16/2017 37.55 −120.121 83,297 21 131 1500

Gate CA 5/20/2017 32.654 −116.829 2265 0 0 315
Railroad CA 8/29/2017 37.441 −119.613 12,765 0 19 511
Lilac 5 CA 12/7/2017 33.299 −117.203 4159 69 193 1500

Mission CA 9/3/2017 37.236 −119.466 1006 8 9 250
Earthstone NV 7/3/2017 39.591 −119.517 35,299 0 1 131
Preacher NV 7/24/2017 38.855 −119.588 5330 0 0 800

Prater NV 8/6/2017 39.551 −119.669 1572 0 0 30
Long Valley CA 7/11/2017 39.992 −119.92 80,456 3 10 500

Winnemucca Ranch NV 7/4/2017 39.756 −119.644 4153 0 5 300
Cold Springs NV 7/14/2017 39.646 −119.938 1557 0 0 100

Opera CA 4/30/2017 33.997 −117.301 1070 0 0 0
Cutter NV 10/3/2017 38.829 −119.604 4065 0 0 150

Roadrunner CA 7/30/2017 36.015 −118.933 2436 0 0 10
Pier CA 8/29/2017 36.122 −118.708 36,626 0 2 1360

Winter CA 7/6/2017 38.526 −122.054 2485 0 0 63
Atlas CA 10/9/2017 38.364 −122.237 51,664 129 790 5000
Jones OR 8/11/2017 44.004 −122.512 10,260 0 1 5
Nuns CA 10/9/2017 38.349 −122.503 56,883 0 0 0

Hatchery NV 7/4/2017 38.977 −114.091 1142 0 0 0
Creek CA 12/5/2017 34.294 −118.352 15,833 81 123 2500

East Fork MT 8/27/2017 48.231 −109.576 21,165 5 5 80
Rye CA 12/5/2017 34.43 −118.635 4895 3 6 5460

Gibralter Ridge MT 8/8/2017 48.86 −114.849 6299 0 1 145
Caribou MT 8/11/2017 48.979 −115.351 28,101 0 40 570
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West Fork MT 8/30/2017 48.519 −115.606 21,154 0 0 709
Canyon Creek WA 7/15/2017 48.271 −120.072 1232 0 2 85

East Saddle WA 8/12/2017 46.782 −119.349 17,318 2 2 40
Wall CA 7/7/2017 39.463 −121.406 6488 12 91 5400

Cascade CA 10/9/2017 39.359 −121.375 16,155 0 200 1000
Cherokee CA 10/9/2017 39.591 −121.585 8415 0 3 53

Tubbs CA 10/9/2017 38.568 −122.68 36,981 14 576 29,192
Sulfur CA 10/9/2017 38.992 −122.666 2591 70 205 1720

Oil Well NV 7/17/2017 40.92 −115.725 7240 0 28 200
Redwood Valley Incident CA 10/9/2017 39.339 −123.213 36,545 0 90 100

Pocket CA 10/9/2017 38.77 −122.883 18,691 0 0 0
Palmer CA 9/2/2017 33.991 −117.121 4148 1 0 150

Mecca Fire OR 6/26/2017 44.781 −121.231 2515 0 0 23
Emerson 0638 Rn OR 7/25/2017 44.69 −121.012 10,683 0 1 25

Thomas CA 12/4/2017 34.459 −119.303 281,982 280 1063 18,000
Nena Springs OR 8/9/2017 44.974 −121.198 70,074 4 10 199
Pilot Valley NV 8/13/2017 41.106 −114.095 2578 2 6 157

Ana OR 7/8/2017 43.009 −120.769 5801 2 4 55
Eagle Creek OR 9/2/2017 45.618 −121.942 48,816 0 9 5526
Sheep Gap MT 8/29/2017 47.475 −115.046 24,702 0 0 80

Silver Dollar WA 7/2/2017 46.57 −119.779 30,789 0 0 30
Horn Butte 0594 Rn OR 7/21/2017 45.682 −120.069 9325 0 0 35

Glade 3 WA 7/30/2017 46.144 −120.054 10,582 0 1 20
Morgan Creek OR 8/3/2017 44.426 −117.235 2329 0 0 0
Martin Canyon ID 7/23/2017 43.49 −114.168 4053 0 0 0

Lagoon ID 7/26/2017 42.955 −114.438 1484 0 3 10
Mammoth Cave ID 8/4/2017 43.155 −114.193 50,391 0 3 50

Breeze ID 6/26/2017 43.302 −115.87 1863 0 0 40
North Delphia MT 7/14/2017 46.548 −108.278 3767 0 0 40

Sage Hills MT 7/20/2017 45.763 −108.348 1197 0 0 100
Lincoln Beach UT 6/23/2017 40.071 −111.842 2298 0 0 14

Mulberry AZ 5/6/2017 31.901 −110.611 1846 0 4 20
Lizard AZ 6/7/2017 31.986 −110.006 15,791 0 0 108
Encino AZ 6/21/2017 31.65 −110.648 1357 2 15 250
Cajete NM 6/15/2017 35.809 −106.559 1433 0 0 233

Sawmill AZ 4/23/2017 31.822 −110.687 47,357 0 0 415
Alice Creek MT 7/22/2017 47.142 −112.438 29,971 0 4 240

Sunrise MT 7/17/2017 47.07 −114.838 26,896 0 0 382
Tarina CA 6/30/2017 35.385 −118.793 1257 0 0 6

Lolo Peak MT 7/15/2017 46.666 −114.242 62,316 2 10 1962
Mendenhall MT 8/26/2017 45.653 −110.18 1196 0 2 30

July MT 7/3/2017 47.89 −108.575 11,409 0 6 101
Hondito NM 5/15/2017 36.608 −106.02 6949 0 0 0

Hill CA 6/26/2017 35.405 −120.481 1900 5 4 30
Wolf SD 3/4/2017 43.998 −102.169 1797 0 0 45

Hodgeman County KS 3/6/2017 38.143 −99.853 8518 9 8 0
South Wenas WA 6/27/2017 46.72 −120.601 2956 0 0 175

Spartan WA 6/26/2017 47.32 −120.155 8775 0 0 91
Sheep WA 7/24/2017 46.758 −120.544 1564 0 0 0

Monument Hill WA 8/17/2017 47.304 −119.718 6437 19 23 175
Meyers MT 7/14/2017 45.989 −113.552 68,711 0 1 344

Jolly Mountain WA 8/11/2017 47.341 −120.978 38,159 0 0 5624
Rattlesnake Hills WA 7/6/2017 46.515 −120.432 3553 0 0 30

Perryton TX 3/6/2017 35.99 −100.36 290,211 0 11 200
Monitor WA 11/1/2017 47.503 −120.4 1196 0 0 300

Brianhead UT 6/17/2017 37.788 −112.693 74,276 5 26 1526
Thirty Seven CA 10/9/2017 38.155 −122.474 1773 4 0 80

303 TX 2/28/2017 33.401 −102.535 9601 0 0 0
Slinkard CA 8/29/2017 38.659 −119.571 8814 0 0 510
Keystone WY 7/3/2017 41.174 −106.281 2784 0 1 80

Tripp TX 2/10/2017 34.448 −100.789 2573 0 0 4
Dumas Complex TX 3/6/2017 35.357 −101.722 26,155 0 0 150
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Prison TX 2/28/2017 34.522 −101.804 2420 4 13 1143
2018 North Sargent Wf TX 10/16/2017 28.813 −95.62 3959 0 0 60

Oks—283 OK 3/7/2017 36.689 −99.755 68,558 0 0 300
Lefors East TX 3/7/2017 35.365 −100.524 68,701 0 0 0

Beaver Mountain OK 1/31/2017 35.168 −95.339 4754 0 0 0
Powder Mill OK 2/2/2017 34.964 −95.382 1551 0 0 47
Highlands KS 3/7/2017 38.182 −97.919 7418 9 13 1100

Jupiter Hills KS 3/4/2017 38.109 −97.848 1283 1 1 100
Legion Lake SD 12/11/2017 43.669 −103.394 54,868 0 3 203
Sugar Cove NC 1/28/2017 35.75 −82.143 638 0 0 14

Turn Table Fire SC 4/2/2017 33.312 −79.878 1868 0 0 0
Dobson Knob NC 4/9/2017 35.812 −81.993 1720 0 0 45

Big Branch Fire KY 4/9/2017 37.181 −83.054 651 0 0 32
Ne 212th St FL 3/31/2017 29.469 −81.956 610 0 0 40
Sod Farm 2 FL 4/16/2017 28.913 −81.453 901 0 0 0
Lost Creek OK 3/3/2017 35.403 −96.141 2420 0 0 25
Spocogee OK 3/1/2017 36.071 −96.33 6318 0 0 45

Gun Range OK 3/21/2017 35.646 −96.063 1524 0 0 3
Cod Dr FL 7/8/2017 28.767 −82.258 640 0 0 12
Conner FL 3/26/2017 29.252 −81.918 676 0 0 10

310 West Of Como MS 1/29/2017 34.518 −90.075 745 2 1 6
Cr630 E FL 2/15/2017 27.782 −81.315 5096 0 142 0

Oks—Starbuck OK 3/7/2017 37.081 −99.893 657,299 0 0 1000
Bonita NM 6/3/2017 36.58 −106.149 7754 0 0 65

Garfield Road FL 3/22/2017 30.418 −82.022 721 14 21 3
West Mims GA 4/6/2017 30.651 −82.294 166,737 0 4 920

Apple CA 6/9/2018 39.924 −122.349 2849 0 9 0
Creek CA 6/24/2018 40.486 −122.518 1353 0 11 610

Middle Ridge OK 3/21/2017 35.577 −94.626 8501 0 0 0
Persimmon Ridge OK 3/21/2017 35.653 −95.088 5333 0 0 0

Sun CA 10/7/2018 40.23 −122.143 3921 0 0 70
Lost Fire OK 3/21/2017 34.708 −95.757 4178 0 2 4

Potato Hills OK 3/23/2017 34.694 −95.226 2503 0 0 0
Montecito WA 6/28/2018 46.175 −119.762 1877 0 0 50

Wagon Wheel WA 9/1/2018 46.35 −119.513 4063 0 0 90
Milepost Twenty Two WA 6/20/2018 46.966 −120.05 7406 0 0 16

Boffer WA 8/11/2018 46.142 −119.141 4645 0 7 0
Conrad WA 7/1/2018 46.739 −120.665 4611 0 1 220

Milepost 90 WA 8/1/2018 45.681 −120.937 10,757 0 0 70
Lee Williams Rd FL 3/5/2017 26.133 −81.637 7288 1 6 1000

South Valley Road OR 8/1/2018 45.371 −121.161 20,471 0 19 212
Jackson Ranch OK 3/23/2017 35.797 −96.217 4243 0 0 40

Substation 0730 Rn OR 7/17/2018 45.5 −120.939 69,109 8 52 1363
Mile Marker 44 WA 9/1/2018 46.149 −120.529 4063 0 0 0
Boxcar 0410 Rn OR 6/21/2018 45.022 −121.004 99,874 0 0 55

Tenino Fire OR 8/16/2018 44.708 −121.371 8821 0 0 0
Graham 0420 Od OR 6/21/2018 44.55 −121.4 2102 0 11 204

Angel Springs WA 8/2/2018 47.775 −118.029 4718 0 14 170
Eagle CA 7/13/2018 41.268 −120.105 2116 0 0 18

Soap Lake WA 6/11/2018 47.436 −119.49 2158 0 0 35
Chelan Hills WA 7/27/2018 47.782 −119.962 1850 4 8 100
Rocky Reach WA 7/13/2018 47.527 −120.327 3346 0 0 313

Boylston WA 7/19/2018 46.85 −120.11 66,292 1 6 1
Keithly ID 7/25/2018 44.464 −116.843 17,588 0 0 31

Silver State NV 7/14/2018 40.886 −115.665 3766 0 0 0
Rocky NV 6/23/2018 40.378 −118.262 1641 1 1 10

Owyhee NV 7/21/2018 41.948 −116.077 5347 0 0 60
South Sugarloaf NV 8/17/2018 41.716 −116.019 241,426 3 17 116

Goodwin AZ 6/24/2017 34.381 −112.299 28,192 3 33 1400
La Tuna CA 9/1/2017 34.23 −118.316 7035 1 10 1376

Powerline ID 8/4/2017 42.699 −112.605 54,378 0 1 35
White Creek NC 3/16/2017 35.837 −81.883 4166 0 0 7
Shoestring ID 8/5/2017 42.878 −114.574 35,543 0 1 2

Penn Swamp Fire NJ 7/20/2017 39.677 −74.638 3587 0 0 0
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Weogufkee OK 3/20/2017 35.233 −95.904 2226 0 0 0
Holiday FL 4/5/2017 26.003 −80.468 8858 0 0 20
30th Ave FL 4/20/2017 26.177 −81.605 6463 18 14 3884

Powerline WY 8/12/2018 44.461 −108.926 1837 0 0 0
Raintree Blvd FL 5/13/2017 27.074 −82.052 3319 0 0 0
Flat Rock Fire NY 7/12/2018 44.87 −73.637 658 0 0 2

Tye River VA 5/3/2018 37.905 −79.154 1761 0 0 29
Spring Creek CO 6/27/2018 37.543 −105.144 107,108 119 225 2878

Blaine CA 8/13/2017 33.984 −117.29 1117 46 0 441
Roosevelt WY 9/15/2018 43.06 −110.387 55,330 1 57 1153

8 Mile ID 9/22/2018 42.595 −111.54 1001 0 5 95
Miles OR 7/16/2018 42.828 −122.699 40,343 0 2 1011

Ramsey Canyon OR 8/22/2018 42.587 −122.992 2127 0 1 540
Natchez CA 7/15/2018 41.895 −123.566 38,800 0 0 104

Taylor Creek OR 7/15/2018 42.488 −123.619 57,505 0 0 3292
Klondike OR 7/16/2018 42.418 −123.873 178,311 0 0 1940
Ferguson CA 7/13/2018 37.635 −119.807 97,307 0 11 5236

Kerlin CA 9/4/2018 40.625 −123.512 1775 0 5 100
Hirz CA 8/9/2018 40.984 −122.279 46,700 0 1 171
Delta CA 9/5/2018 41.007 −122.462 63,732 7 45 330
River CA 7/27/2018 39.055 −123.019 48,920 0 2 305

County CA 6/30/2018 38.683 −122.155 92,450 4 31 1516
Nelson CA 8/10/2018 38.312 −121.999 2205 1 1 260

Whaleback CA 7/27/2018 40.627 −120.824 18,640 0 0 460
Hat CA 8/9/2018 40.998 −121.489 1971 0 0 380

Boyds WA 8/11/2018 48.632 −118.154 5196 0 10 529
Crescent Mountain WA 7/29/2018 48.384 −120.446 53,258 0 0 1196

Camp CA 11/8/2018 39.748 −121.565 153,687 751 18,838 17,500
Stone CA 8/15/2018 41.425 −121.013 39,455 0 2 119

Chaves NV 6/3/2018 39.3 −119.412 3652 1 0 98
Upper Colony NV 6/17/2018 38.812 −119.411 1255 0 0 92

Donnell CA 8/1/2018 38.383 −119.822 36,151 0 136 305
Rattlesnake Creek ID 7/23/2018 45.232 −116.376 8461 0 0 618

Rabbit Foot ID 8/2/2018 44.848 −114.23 33,787 0 0 1446
Pinery AZ 5/12/2018 31.982 −109.353 1474 0 0 25

Viewpoint AZ 5/11/2018 34.693 −112.343 5389 14 0 0
Tinder AZ 4/27/2018 34.59 −111.11 16,083 0 96 1700

Hub Point AZ 7/27/2018 34.251 −110.29 4674 0 0 0
Soldier Canyon NM 6/7/2018 33.185 −105.759 1386 0 0 100

Pierson NM 4/17/2018 32.499 −103.418 1060 0 0 2
Ute Park NM 5/31/2018 36.533 −105.028 30,177 3 15 2952

Valley CA 7/6/2018 34.105 −116.946 1250 0 0 500
Harbor Bay TX 4/13/2018 35.619 −101.631 1428 0 8 50

Cranston CA 7/25/2018 33.715 −116.705 13,096 6 12 6230
Holy CA 8/6/2018 33.704 −117.468 22,845 18 24 13,300
Stone CA 6/4/2018 34.55 −118.292 1659 0 0 150

Badger Hole CO 4/17/2018 37.433 −102.088 49,146 1 24 0
Charlie CA 9/22/2018 34.521 −118.559 3367 0 0 100
Cr 26 TX 4/14/2018 35.256 −100.084 1386 0 0 6

Milliron TX 4/13/2018 34.913 −100.011 20,437 0 21 75
34 Complex OK 4/12/2018 36.585 −99.352 57,533 0 55 150

Hill CA 11/8/2018 34.207 −118.953 4427 2 4 437
Front CA 8/19/2018 35.119 −120.097 1126 0 0 5
Perry NV 7/27/2018 39.802 −119.496 53,734 3 16 418

Airline CA 6/4/2018 36.391 −120.962 1477 0 0 1
Lake Christine CO 7/3/2018 39.419 −107.037 12,506 9 6 1329

Chateau CO 6/29/2018 38.815 −105.3 1414 0 8 754
Carson Midway CO 3/16/2018 38.527 −104.716 4773 0 2 0

Rhea OK 4/12/2018 36.003 −99.003 277,949 0 50 3500
Organ NM 6/24/2018 32.454 −106.527 4880 0 0 1

Harman Road TX 7/18/2018 31.333 −97.972 3094 0 1 115
Owl Creek NV 8/30/2018 40.658 −115.526 1165 0 0 12
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Lime Rock Rd (19) FL 6/24/2018 29.765 −84.866 1190 4 36 400
Cougar Creek WA 7/28/2018 47.816 −120.478 42,681 0 0 3000

Rozell MO 2/15/2018 36.587 −92.862 1970 0 6 0
Bald Mountain UT 8/24/2018 39.925 −111.693 21,016 0 1 2600

Pole Creek UT 9/6/2018 39.982 −111.53 102,426 0 1 2626
Hill Top UT 8/6/2018 39.737 −111.441 1784 2 4 320

Dollar Ridge UT 7/1/2018 40.111 −110.877 69,817 6 453 1023
Little Shepherds Trail KY 5/1/2018 36.976 −83.034 541 0 0 0
Keepers Branch Fire SC 3/4/2018 33.189 −79.542 819 0 0 6

Range Two NV 9/30/2018 40.669 −115.448 9361 0 8 60
Dog Head NM 6/14/2016 34.851 −106.3 19,816 0 73 1950

Ranch CA 7/27/2018 39.269 −122.775 427,048 0 0 86
416 CO 6/1/2018 37.493 −107.903 55,123 0 0 3386

Grass Valley WA 8/11/2018 47.94 −119.166 76,074 1 20 330
West 60 OK 3/7/2018 36.789 −96.487 18,715 0 0 10

Carr CA 7/23/2018 40.715 −122.593 233,710 282 1608 5013
Badger Creek WY 6/10/2018 41.055 −106.11 20,752 4 3 553

Tomahawk AR 4/12/2018 36.056 −92.671 533 0 8 15
Woolsey CA 11/8/2018 34.125 −118.824 97,962 365 1643 57,000

Flag Pond (11) FL 3/21/2018 26.139 −81.595 2562 0 0 0
Buffalo Corral AZ 7/14/2019 31.573 −110.377 1144 0 0 0

Kincade CA 10/23/2019 38.672 −122.776 77,785 60 375 90,015
Easy CA 10/30/2019 34.267 −118.829 2105 1 1 2635

Sandalwood CA 10/10/2019 33.999 −117.084 1048 16 76 0
Tick CA 10/24/2019 34.451 −118.394 4932 48 31 10,425

Maria CA 11/1/2019 34.314 −119.066 10,036 0 5 2722
Saddleridge CA 10/10/2019 34.318 −118.515 9656 93 38 25,760
Black Bridge CO 4/4/2019 38.074 −103.177 1690 0 0 7

116th Ave Se (11) FL 3/21/2018 26.034 −81.56 29,262 0 3 0
335 TX 4/13/2018 32.676 −99.716 2481 0 15 100

Blue Creek #2 OK 3/14/2018 35.052 −95.594 2578 0 0 0
Deerte OK 3/15/2018 35.367 −95.871 1833 0 0 8
Henry OK 3/20/2018 35.581 −96.42 1160 0 0 17

Brewster OK 3/16/2018 35.685 −96.299 4049 0 0 20
Flying G OK 3/12/2018 36.124 −96.203 1886 0 0 184
Walker OK 3/24/2018 36.35 −96.233 2626 0 0 9
Drumb OK 3/24/2018 36.467 −96.3 30,419 0 0 9

Onion Prairie OK 3/6/2018 36.641 −96.017 3911 0 0 20
New Years Wf TX 1/1/2018 29.706 −93.908 5613 0 0 12
Farmers Road TX 1/22/2018 32.738 −97.596 2379 0 0 252

Carbon TX 4/13/2018 35.214 −100.068 12,148 0 0 500
Pemberton AZ 8/6/2019 34.731 −112.676 1211 0 0 0

Green Ravine UT 9/3/2019 40.683 −112.228 2260 0 0 3
Goose Point UT 8/21/2019 40.076 −111.832 9190 0 0 23

Dove AZ 5/24/2019 33.799 −112.429 1078 0 0 10
White Wing AZ 5/30/2019 33.796 −112.437 1797 0 0 30

Tenaja CA 9/4/2019 33.549 −117.258 1820 2 0 1200
Walker CA 9/4/2019 40.09 −120.585 58,752 0 9 78

Long Valley CA 8/24/2019 39.882 −119.995 2451 4 1 80
Briceburg CA 10/6/2019 37.608 −119.932 5555 0 1 160
Woodbury AZ 6/8/2019 33.52 −111.175 130,243 0 0 1537

Stuckey Rd Ma MT 9/2/2019 47.586 −111.357 4077 0 9 0
Matson WA 10/7/2019 46.619 −118.93 8715 0 0 86

Sand CA 6/8/2019 38.904 −122.259 2473 0 7 125
Museum AZ 7/21/2019 35.263 −111.62 2011 0 0 0

Elmer City WA 6/23/2019 48.064 −118.943 1996 2 2 45
Desert Canyon WA 7/23/2019 47.711 −120.148 1505 0 0 16
243 Command WA 6/4/2019 46.855 −119.785 18,891 1 2 36

Cut Across MT 4/7/2019 45.63 −106.7 1858 0 0 130
Boulder CA 6/5/2019 35.32 −119.93 1199 0 0 0
Decker CO 9/8/2019 38.441 −105.995 9876 0 4 142
Boulin AZ 8/6/2019 35.382 −112.036 4094 0 0 12

Coldwater AZ 5/30/2019 34.481 −111.335 16,824 0 0 14
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Incident Name State
Ignition

Date
Lat. Long.

Acres
Burned

Total
Structures
Damaged

Total
Structures
Destroyed

Total
Structures

Threatened

Cave CA 11/25/2019 34.489 −119.768 2761 1 0 15,000
Left Hand WA 7/23/2019 46.915 −120.975 3234 0 0 347

North Hills MT 7/26/2019 46.765 −111.944 4144 0 0 600
Tx Point East Christmas

Eve
TX 12/24/2019 29.716 −93.9 1163 0 0 43

Williams Flats WA 8/2/2019 47.977 −118.498 44,680 0 3 56
Pedro Mountain WY 8/24/2019 42.337 −106.826 21,910 0 8 90

Cove Creek ID 8/4/2019 45.346 −114.465 5273 0 0 39
Channing TX 2/16/2019 35.663 −102.275 7855 0 0 20
Burnside OK 3/19/2019 34.593 −97.029 1117 0 0 10

East Kennedy Creek KS 4/2/2019 38.29 −95.815 1003 0 0 0
Clark Branch #2 KY 9/17/2019 37.603 −82.621 1315 0 0 0

344 D FL 9/11/2019 30.356 −84.632 2339 0 0 0
Cr 2297 Allenton (03) FL 3/30/2019 30.115 −85.482 725 0 0 52

Dry Hollow WV 11/28/2019 38.831 −79.308 1412 0 0 16
Kennedy Peak VA 11/14/2019 38.762 −78.466 769 0 0 0
Spring Hill Fire NJ 3/30/2019 39.79 −74.451 8182 0 0 0

Appendix D. 2052 Weather Time Series Estimation

We used these publicly-available online repositories of NOAA RTMA data:

1. Iowa state (Iowa State) [57] covering 2011-current
2. National Centers for Environmental Information (NCEI) National Digital Guidance

Database (NDGD) (NOAA NCEI, 2022) covering 2011- current

Since approximately 3% to 4% of hourly records are missing from both the Iowa State
and NCEI datasets, we merged these datasets to minimize the amount of missing data.

Mid-century fire weather inputs were generated by scaling or “nudging” 2011–2020
Real Time Mesoscale Analysis (RTMA) temperature, relative humidity, and precipitation by
computing distribution changes between 2021 and 2051 ensemble regional model output.
While wind is an essential fire weather variable, it was excluded from nudging because
the literature does not support a statistically robust climate change signal for it (e.g.,
Torralba et al., 2017 [58]).

We used the Multivariate Adaptive Constructed Analogs (MACA) version 2 as our
source for 2020 and 2050 calibration data because it demonstrates skillful performance for
fire weather variables, particularly relative humidity and wind (Abatzoglou and Brown,
2012 [33]). MACA is statistically downscaled Coupled Model Intercomparison Project
version 5 (CMIP5; Taylor et al., 2012 [32]) available in a ~4-km grid over the contiguous
United States (CONUS). It is available at daily resolution and at temporal ranges for present-
day conditions (1950–2005) and future experiments under Representative Concentration
Pathways (RCPs) 4.5 and 8.5. RCP4.5, which represents an intermediate scenario, was
used for this experiment. Temporal ranges for the “2020” and “2050” calibration data
were defined as 2011–2020 and 2048–2057 ensemble means, respectively. Note that the
CCSM4 MACA ensemble member was not included in order to maintain consistency
across variables, because it was not available for relative humidity at the MACA Data
Portal (https://climate.northwestknowledge.net/MACA/data_portal.php, accessed on 8
August 2022).

Nudging was performed independently at each geographic grid point. In order
to facilitate this, the 4-km rectilinear MACA data had to be interpolated to the 2.5-km
curvilinear RTMA grid. The National Center for Atmospheric Research Command Lan-
guage (NCL)’s regridding package from the Earth System Modeling Framework was
used (https://www.ncl.ucar.edu/Applications/ESMF.shtml, accessed on 8 August 2022).
We used bilinear interpolation for temperature and relative humidity, and conservative
regridding for precipitation since it does not represent a smoothly varying field.

Nudging code was obtained from the bias_correction Python3 package (https://
github.com/pankajkarman/bias_correction, accessed on 8 August 2022). Bias correction

https://climate.northwestknowledge.net/MACA/data_portal.php
https://www.ncl.ucar.edu/Applications/ESMF.shtml
https://github.com/pankajkarman/bias_correction
https://github.com/pankajkarman/bias_correction
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techniques like those employed here are used to correct modeled projections by adjusting
them with statistical scaling factors derived between historical model output and observa-
tions; put another way, they are used to downscale climate change projections to station
locations (e.g., Fang et al., 2015 [59], Luo et al., 2018 [60]). Likewise, we use them here to
nudge RTMA output with respect to scaling factors computed between 2020 and 2050
MACA output. We summarize the techniques here.

Appendix D.1. Precipitation

RTMA precipitation projections were obtained via gamma distribution mapping, a
technique developed by Switanek, et al., 2017 [61]). Gamma distribution mapping is unlike
other bias correction methods because it accounts for the frequency of rain days and the
likelihood of events (Switanek, et al., 2017 [61]).

After summing hourly RTMA precipitation into daily accumulations to match the
temporal resolution of the MACA data, this procedure goes as follows:

1. Define rain days (RDs) as those which feature non-zero precipitation accumulations
for each distribution. Then compute the expected number of projected 2050 RTMA
rain days (RDP):

RDP = RDRTMA ×
RDMACAF
RDMACAH

(A1)

where RDRTMA, RDMACAF, and RDMACAH are the number of rain days in RTMA,
2050 MACA, and 2020 MACA data, respectively. In the event MACA 2050 has fewer
RDs than MACA 2020, this results in a downward adjustment in RDs in the nudged
RTMA distribution. Note that projected RTMA RDs can never increase above original
RTMA RDs, an important limitation in this approach.

2. Fit gamma probability density functions (PDFs) to each of the modeled rain-day
distributions. Cumulative distribution functions (CDFs) and their inverses (ICDFs)
are found from these PDFs.

3. Calculate the relative scaling (SFR) between the fitted RTMA and 2020 MACA dis-
tributions at all CDF values corresponding to the precipitation events of the RTMA
time series:

SFR =
ICDFRTMA(CDFRTMA)

ICDFMACAH(CDFRTMA)
(A2)

where SFR is an array of relative scaling factors, ICDFRTMA and ICDFMACAH
are the ICDFs for the fitted 2020 RTMA and MACA distributions, respectively, and
CDFRTMA is the estimated CDF for RTMA precipitation values. As an example,
say the largest value in the RTMA time series is equal to 40 mm and corresponds
to a CDF value of 0.997 (in other words, ICDFRTMA(0.997) will yield 40 mm), but
ICDFMACAH(0.997) yields only 6 mm (we discuss these systematic magnitude
discrepancies in Assumptions and Limitations). The most extreme nudged value will
have a relative scaling factor of 6.67 (40/6).

4. Calculate recurrence intervals (RIs) from the three fitted CDFs, then find the adjusted
RI for 2020 RTMA:

RISC = max
(

1,
RIMACAF × RIRTMA

RIMACAH

)
(A3)

where RIMACAF, RIRTMA, and RIMACAH correspond to the RIs for the RTMA
and 2050 and 2020 MACA data, respectively. The value is always greater than or
equal to 1 to ensure that the subsequent step yields values between 0 and 1. This step
adjusts the RI of 2050 MACA events by differences in the extremity of 2020 RTMA
and MACA events. For example, if the RI for the most extreme 2020 RTMA value
is shorter than that of the most extreme 2020 MACA value, then the RI for the most
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extreme 2050 MACA value will be shortened accordingly. RISC is then used to find
the corresponding scaled CDF values with

CDFSC = 1− 1
RISC

(A4)

where CDFSC reflects the scaling of the change in MACA event likelihoods between
2050 and 2020 with respect to RTMA likelihoods.

5. The initial array of projected RTMA values is:

RTMAI = ICDFMACAF(CDFSC)× SFR (A5)

where ICDFMACAF is the ICDF for the 2050 MACA data. In the event that (A1)
adjusted the RDs for the projected time series, RTMAI is linearly interpolated along
the adjusted length of RDP.

6. The array of projected values is then placed back into the RTMA time series at the
corresponding locations. For example, if the largest annual RTMA value occurred on
April 21st, then the largest projected RTMA value will be placed on that same day.

7. Last, the ratio between the projected and original RTMA values for each day is applied
to the hourly RTMA precipitation time series.

Appendix D.2. Temperature

RTMA temperature projections were obtained via a normal distribution mapping
technique (Switanek, et al., 2017 [61]). After applying cubic spline interpolation to daily
minimum and maximum MACA temperatures to obtain hourly distributions (we discuss
this further in Assumptions and Limitations), the steps go as follows:

1. All three distributions are linearly detrended to get a more accurate measure of the
natural variability. While trends are added back at the end, all subsequent steps use
the detrended time series.

2. Gaussian PDFs are fit to each of the annual distributions, then corresponding CDFs
and ICDFs are derived from these.

3. An absolute scaling factor is found:

SFA = [ICDFRTMA(CDFRTMA)− ICDFMACAH(CDFMACAH)]×
(

σMACAF
σMACAH

)
(A6)

where σMACAF and σMACAH are the standard deviations of the 2050 and 2020
MACA data and all other terms are defined as before.

4. RIs are calculated from the CDFs, scaled with (A3), then used to find the modified
CDF with

CDFSC = 0.5 + sgn(CDFMACAF − 0.5)×
∣∣∣∣0.5− 1

RISC

∣∣∣∣ (A7)

Equation (A7) differs from (A4) because the normal distribution is two-tailed.
5. The initial array of projected RTMA values is

RTMAI = ICDFMACAF(CDFSC) + SFA (A8)

6. As before, reinsert projected values into the original RTMA time series. Then add the
trend of the RTMA time series back into the projected one.

Appendix D.3. Relative Humidity

Mid-century relative humidity projections used a comparatively simpler approach
called empirical quantile mapping (Gudmundsson et al., 2012 [62]). Unlike the previous
two methods, it makes no assumptions about the underlying distribution of the data.
Briefly, it goes as follows:

1. An empirical CDF (ECDF) is approximated for the 2020 MACA distribution.



Fire 2022, 5, 117 42 of 44

2. The corresponding percentiles from the ECDF are found in the RTMA data.
3. The difference between the value at each equivalent percentile is computed between

the 2050 and 2020 MACA data.
4. This difference is applied to the RTMA data.

In this way, the order of observations in the 2020 record is maintained (i.e., underlying
variability) while shifting towards a future climate.
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