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Wildfire-burned area has increased rapidly in the western 
United States over the past four decades1–3, threaten-
ing humans and altering ecosystem function and veg-

etation growth patterns4–6. Several factors have contributed to the 
rise in burned area in the western US. Historic fire suppression has 
increased fuel loads in many areas7. Human populations have also 
expanded the wildland–urban interface (WUI)—a zone of transition 
between wildland and urban environments8—where human-caused 
ignitions are frequent and vegetation is abundant, posing high risk 
to human lives and structures9–11. Moreover, anthropogenic cli-
mate change and natural climate variability have combined to sub-
stantially increase the atmospheric aridity, which has contributed 
to a decline in fuel moisture and a resultant rise in burned area2. 
However, the sensitivity of burned area to atmospheric aridity can 
vary significantly across regions12–14. Understanding and predicting 
fire hazard as hot, dry conditions become more common15–17 require 
accounting for the factors that modulate this sensitivity, including 
fuel availability and fuel moisture18,19.

As atmospheric aridity increases, live fuel moisture content 
(LFMC, measured as the mass of plant water per unit dry bio-
mass) generally decreases20,21. However, the effect of atmospheric  
aridity on LFMC is regulated by a range of location-specific fac-
tors, including, but not limited to, topographic and soil controls on 
root-zone water availability, root water uptake and plant hydrau-
lic traits that affect transpirational water loss. Specifically, plant 
hydraulic traits can cause up to 3-fold variation in LFMC, and 
thus affect fuel flammability22. For the same meteorological con-
ditions (including both atmospheric aridity and precipitation), 
fuel moisture can vary widely, depending on plant species and 
hydraulic diversity23–25. However, a single fire can impact a wide 
range of species in a community, with a potentially diverse range of  
plant hydraulic traits within the area burned26,27. It is therefore 
unclear whether – and if so, to what extent – plant and soil hydrau-
lic traits affect the spatial distribution of LFMC and fire hazard at 
large scales.

We investigate how the plant and soil features influencing LFMC’s 
response to climate affect fire hazard. We consider the effects of cli-
mate on LFMC through a climate-derived moisture balance that 
considers both precipitation and vapour pressure deficit (VPD, 
calculated using the wetness of dead foliage and twigs in the lit-
ter; see Methods). We refer to the integrated sensitivity of LFMC to 
climate-derived moisture balance as plant-water sensitivity (PWS). 
Because of the significant memory in soil moisture28, LFMC depends 
on both current and previous meteorology. To account for this, we 
calculate PWS as the sum of the slopes of a multiple linear regres-
sion between LFMC anomalies and climate-derived moisture bal-
ance anomalies, with lags varying from 0 to 150 d in 15 d intervals.

We hypothesize that PWS regulates the effect of climate on 
burned area. Specifically, a unit decrease in climate-derived mois-
ture balance will cause a larger decrease in LFMC in ecosystems 
where PWS is high. This decrease in LFMC may result in higher 
flammability29 and, eventually, a larger burned area than in eco-
systems with low PWS where the decrease in LFMC for the same 
decrease in climate-derived moisture balance is smaller (Extended 
Data Fig. 1). To test this hypothesis, we use LFMC maps derived 
from microwave remote sensing30. Furthermore, to assess whether 
current vegetation distributions will buffer or exacerbate future fire 
vulnerability in the western US, we test the interactions between 
PWS and other drivers of fire risk, including the rate of change in 
atmospheric aridity across the region, and the rate of growth of the 
WUI population.

Results
Link between PWS and wildfire vulnerability. The slope between 

timeseries of annual burned area and annual VPD 
(

d(burned area)
d(VPD)

)

 
is strongly linked to the PWS (R2 = 0.71 and P < 0.0001; Fig. 1a). 
For different bins of PWS, spatially disparate locations with simi-
lar PWS are combined and the interannual variations of burned 
area and VPD is calculated across these locations (Fig. 1a).  
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The d(burned area)
d(VPD)

 is the slope between annual burned area and VPD 
for the years 2001–2020, and ranges from ~350 to 700 km2 hPa−1  
(Fig. 1c), depending on ecosystem PWS. We illustrate the simplified 
calculation of PWS for two pixels from high- and low-PWS ecosys-
tems in Fig. 1b. The link between PWS and d(burned area)

d(VPD)
 is robust 

in both shrublands (R2 = 0.64, P = 0.005) and forests (R2 = 0.69, 
P = 0.003), but uncertain in grasslands (Supplementary Fig. 3). In 
grasslands, the slope between burned area and VPD is consistently 
low, resulting in a lower sensitivity to PWS (R2 = 0.17, P = 0.24).

On the basis of the nonlinear relationship between PWS and 
d(burned area)

d(VPD)
 in Fig. 1a, we categorize PWS into three wildfire hazard 

categories: (1) low hazard for PWS < 1, where d(burned area)
d(VPD)

 is roughly 
constant, (2) medium hazard for PWS ∈ (1, 1.5), where d(burned area)

d(VPD)
 

increases moderately with PWS, and (3) high hazard for PWS > 1.5, 
where d(burned area)

d(VPD)
 increases sharply with PWS. Hereafter, we refer 

to this definition of ‘hazard’ when interpreting our results, but use 
the word ‘risk’ when the hazard coincides with human exposure and 
vulnerability. Note that the hazard zones as defined here only refer 
to the increase in burned area and are not related to the losses or 
benefits from the area burned.

To verify that the effect of PWS on d(burned area)
d(VPD)

 is causal, we 
test the correlation between PWS and several other potential bio-
geographical confounders that may correlate with PWS, but also 
affect d(burned area)

d(VPD)
. However, we do not find any strong correlation 

between PWS and mean or variance of VPD, mean normalized dif-
ference vegetation index (NDVI), dry-season NDVI, or dry-season 
length (see Supplementary Discussion 1 and Supplementary Fig. 4). 
Because each bin in Fig. 1a represents a collection of locations that 
are disparate in space (Supplementary Fig. 2), the likelihood that 
other untested confounders exist is reduced.

Although we define PWS as the sensitivity of LFMC to 
climate-derived moisture balance, it is worth noting that this  

moisture balance will be influenced by VPD. Thus, VPD influences 
both the x axis and y axis of Fig. 1a, introducing the potential for 
circularity and artificially strong correlation. To evaluate this pos-
sibility, we compute a modified PWS that uses VPD as the predic-
tor of LFMC rather than the climate-derived moisture balance. The 
correlation between this modified PWS and the original PWS is low 
(R2 = 0.13; see Supplementary Discussion 2 and Fig. 5), suggesting 
that VPD only weakly affects PWS relative to other factors. Thus, 
this potential circularity has little effect on the strong correlation in 
Fig. 1a, which instead is probably driven by LFMC’s effects on fire 
flammability and spread.

Antecedent precipitation (during the months of December–
May, before the peak fire season) can spur vegetation growth, 
increasing fuel loads, and ultimately burned area, especially in arid 
ecosystems12. If precipitation-led growth in fuel availability is cor-
related with PWS, we may overestimate the role of PWS. However, 
we find no positive correlation between PWS and the sensitivity of 
fuel availability (represented by NDVI) to antecedent precipitation 
for any land cover (Supplementary Fig. 6). Since the effect of ante-
cedent precipitation on fire-season fuel availability can vary with 
mean precipitation, we also re-compute the previous calculation 
across the gradient of mean precipitation, but again find no signifi-
cant correlations (Supplementary Fig. 7). Overall, these sensitivity 
analyses suggest that the relationship in Fig. 1a is robust and prob-
ably driven by changes in LFMC dynamics across ecosystems with 
different PWS.

Drivers of PWS. The strong link between PWS and d(burned area)
d(VPD)  

prompts the question, what drives spatial variability in PWS? 
Using a random forest model (see Methods), we find that 58% of 
the variance in PWS is explained by 14 plant and soil hydraulic 
traits (Supplementary Fig. 8). The most important drivers of PWS 
are average saturated soil hydraulic conductivity (Ks, 20% impor-
tance), the shape of soil water retention curves (n, 13% impor-
tance) and root depth (9% importance) (Fig. 2). In total, soil and 
plant traits contribute to 55% and 45% of the explained impor-
tance, respectively.
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Fig. 1 | PWS and its link to wildfire vulnerability. a, Sensitivity of burned area to VPD as a function of PWS. Points indicate data for 15 equal-vegetated area 
bins of PWS (Supplementary Fig. 1). Whiskers indicate 1 standard error in the estimate of slope. Pink bars at the bottom represent wildfire hazard due to 
PWS. b, The PWS calculation is illustrated for a sample pixel originating from the first (last) PWS bin and shown on the left (right). In each case, for visual 
simplicity, only data for the time lag leading to the highest slope between LFMC anomaly and climate-derived moisture balance anomaly are shown, even 
though PWS is calculated as the sum of all slopes (see Methods). c, Annual burned area versus mean annual VPD (April–March) for all pixels in the first 
(last) PWS bin is shown on the left (right). In all panels, the first (last) PWS bin is indicated by blue (yellow); thick lines indicate linear regression best fits, 
with grey bands indicating 95% confidence intervals. For the geographic locations of data presented in b and c, see Supplementary Fig. 2.
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PWS is higher where VPD is increasing fastest. Given the role of 
PWS in regulating the sensitivity of burned area to VPD, we investi-
gate how PWS has affected human exposure to wildfires. From 1980 
to 2020, VPD increased across 91% of the western US, with a mean 
increase of 0.05 hPa yr−1 (Fig. 3a,d). We observe that PWS is higher in 
regions where VPD increased more quickly (Fig. 3a,b). The asymme-
try in the joint distribution of VPD trends and PWS results in ~28% 
of the western US having both PWS and VPD trends that are greater 
than their respective median values (Fig. 3a). Results are similar when 
VPD trends are analysed relative to their long-term mean rather than 
as absolute values (Supplementary Fig. 9). Since high PWS and high 
VPD growth both enhance fire hazard, their co-occurrence is likely 
to amplify increases in burned area. This effect of ‘double-hazard’, 
where PWS is high (≥1.5) and VPD increased faster than average, 
is concentrated in regions such as the Sierra Nevada in California, 
eastern Oregon, the Great Basin in Nevada and the Mogollon Rim in 
Arizona (pink contour in Fig. 3c,d).

The WUI has expanded disproportionately in high PWS regions. 
Beyond burned area, wildfire risk is also shaped by patterns of 

human exposure and vulnerability, both of which are strongly 
influenced by the distribution of the WUI. The WUI areas are 
proximal to large fuel loads, and the large number of humans and 
settlements in the WUI elevates both exposure and vulnerability. 
We thus investigate spatial patterns in WUI population growth as a 
function of PWS. Between 1990 and 2010, the population living in 
the WUI roughly doubled, growing from 10 million to 20.8 million  
(Fig. 4a), an increase of 108% (Fig. 4b). However, the WUI popu-
lation rose most rapidly in regions with high PWS-driven wildfire 
hazard (160% rise). These are the same regions where burned area 
rose most rapidly relative to 2001 per unit rise in VPD. By contrast, 
in low- and medium-hazard regions, the WUI population grew by 
107% and 95%, respectively.

Discussion
The relationship in Fig. 1a suggests that vegetation regulates the 
effect of atmospheric aridity on burned area. This supports our 
hypothesis that in regions where PWS is high (for example, vegeta-
tion that keep their stomata relatively open, or have only shallow 
roots in soil where water infiltrates quickly), burned area increases 
more rapidly per unit rise in VPD compared with low-PWS regions. 
The larger increase in burned area in high PWS regions could be due 
to the greater decline in LFMC during climate-driven water limita-
tion. Such accelerated decline in LFMC can cause a greater increase 
in fuel flammability or fire spread29, resulting in larger increase in 

burned area. The nonlinearity in the PWS-d(burned area)
d(VPD)

 relationship 

could be due to a threshold-like relationship between LFMC and fuel 
flammability31,32. Despite field-scale experiments showing how plant 
traits and LFMC affect wildfire ignition and spread27,33–35, large-scale 
studies, especially those of burned area, have tended to ignore the 
effects of plant physiology, with some exceptions18,36,37. Although the 
relationship between interannual burned area and climate aridity is 
strong at ecoregion and landscape scales2,38,39, the role of vegetation 
in amplifying or dampening the effect of aridity on wildfires locally 
is still poorly understood. This is in part because LFMC is usually 
modelled primarily on the basis of meteorological conditions40,41. 
Given our empirical evidence that PWS – and thus, soil and plant 
hydraulic traits (Fig. 2) – regulate burned area variability (Fig. 1), 
a greater focus on the ecophysiological controls of burned area is 
needed to fully understand burned area drivers, both in the western 
US and elsewhere. Future studies that explicitly account for spatial 
variations in PWS or other ecophysiological controls may be better 
equipped for analysing and forecasting burned area.

Global fire models parameterize vegetation controls on burned 
area using plant functional types42,43. However, the plant and soil 
hydraulic traits that control PWS (Fig. 2) are known to vary signifi-
cantly within plant functional types44,45. This suggests that basing 
vegetation–fire relationships on functional types may lead to large 
errors46. The PWS metric (1) directly quantifies vegetation-climate 
sensitivity, (2) is related to burned area and (3) is scalable globally. 
The PWS metric thus offers a potential pathway to improve global 
vegetation–fire modelling.

Although PWS is not a widely recognized plant trait, we show 
that it is an indicator of whole-plant–water relations. It combines 
several plant and soil hydraulic traits that affect LFMC (Fig. 2). 
Notably, soil hydraulic traits explain a slightly larger fraction (55% 
vs 45%) of the variation in PWS than do plant hydraulic traits. This 
is to some extent expected; datasets of the explanatory variables have 
much coarser resolution than our PWS dataset, and because veg-
etation traits are more spatially heterogeneous than soil traits, this 
mismatch in scales adds noise and reduces the explanatory power of 
the plant hydraulic traits more than that of the soil hydraulic traits. 
Furthermore, because PWS is determined from LFMC, a prop-
erty of the vegetation, even a co-variation with soil hydraulic traits 
merely reflects how plant water uptake is affected by soil hydraulics. 

Hydraulic traits’
predictive power for PWS
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Fig. 2 | variable importance of plant and soil hydraulic traits to predict 
PWS. Variable importance is estimated from average reduction in node 
impurity in random forests (see Methods). Ks denotes saturated soil 
hydraulic conductivity, n denotes the shape parameter of soil water 
retention curves74, ψ50 denotes xylem water potential at 50% loss in  
xylem conductivity, and g1 denotes stomatal conductance slope parameter 
from ref. 78, which is inversely proportional to the square root of  
water use efficiency. For description and data source of traits, see 
Supplementary Table 1.
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Thus, we argue that our interpretation of PWS as a metric of the 
water sensitivity of plants is appropriate despite the influence of soil 
hydraulic traits (Supplementary Discussion 3).

Vegetation drought acclimation may shift the PWS spatial pat-
tern identified here, and thus its interaction with rising aridity and 
WUI population. Although drought-acclimated vegetation is likely 
to have lower PWS47, the pace of drought acclimation has probably 
been too slow to impact the spatial patterns of the double-hazard 
regions (Fig. 3) in the short term. For example, Trugman 
et al.48 showed that ψ50 of trees in the western US has reduced by 
~0.001 MPa yr−1 between 2000 to 2019, but mean ψ50 can vary from 
1 to 5 MPa geographically. Thus, the spatial variation of ψ50 is at 
least three orders of magnitude greater than its short-term tempo-
ral variation. In the medium-to-long term, however, major shifts in 
plant communities due to post-wildfire recruitment7 could affect 
the overall spatial patterns in PWS.

Our results also show that in forests and shrublands, PWS 
is tightly linked to wildfire hazard. The shrublands in the arid  

ecosystems of the southwestern US are popularly conceptualized as 
fuel-limited, where wildfire hazard is expected to depend on fuel 
availability21,37. However, the moderately high PWS of shrublands, 
combined with the lack of any significant correlation between PWS 
and precipitation-driven fuel growth, suggests that arid shrublands 
in the southwest US may also be flammability-limited in some situ-
ations (Fig. 3b and Supplementary Fig. 7). Our results thus provide 
a mechanistic explanation for empirical observations that previous 
droughts have led to a larger burned area even outside of forests 
in the southwestern US49. In grasslands, which are largely located 
in the Great Plains, the low slope between annual burned area and 
VPD suggests that other factors, such as availability of fuels, igni-
tions, strong winds and phenological stage, may have more domi-
nant influences on burned area50,51. Since our data show that VPD 
played an insignificant role in governing burned area variability for 
grasslands (Supplementary Fig. 3), and since the temporal reso-
lution of the LFMC dataset of 15 d may be insufficient to capture 
rapid responses to water limitation in grasslands, we are unable 
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to quantify the regulating role of PWS on the response of burned 
area to VPD in grassland ecosystems. More generally, the overall 

relationship between PWS and d(burned area)
d(VPD)

 has 29% unexplained 

variance (Fig. 1a). Studies quantifying the effect of dead fuel mois-
ture response, vegetation demographic shifts and fire behaviour on 
d(burned area)

d(VPD)
 may help to resolve this ambiguity.

The geographic co-occurrence of high PWS and high VPD sug-
gests that the distribution of vegetation in the western US has ampli-
fied the effect of climate change on wildfire hazard (Fig. 3). Even 
though VPD has risen in most of the western US over the past few 
decades (Fig. 3d), PWS is higher in regions with larger VPD trends 
(Fig. 3b). Many of the resulting double-hazard regions with high 
PWS and high VPD trends are in the southwestern US. However, 
the PWS variations can be highly localized (Fig. 3c). For instance, 
while the southern Sierra Nevada has very high PWS and is among 
the double-hazard regions, the northern Sierra Nevada has very low 
PWS. Since future projections indicate continued VPD increases 
within the western US16, the spatial distribution of those VPD 
trends may interact with the spatial pattern of PWS to change the 
spatial distribution of overall fire hazard.

The expanding WUI has been viewed as a contributor to ris-
ing wildfire risk primarily due to increased human-caused igni-
tions9–11,52,53. However, as Fig. 4 demonstrates, the rise in wildfire risk 
to humans is also due to increasing population within high-hazard 
regions of the WUI. For instance, the increase in population resid-
ing in the high-hazard regions of the WUI between 1990 and 2010 
(1.5 million people) is roughly equivalent to the combined current 
populations of San Francisco and Seattle, and represents an expan-
sion of the share of total WUI population living in high-hazard 
regions from 9.7% in 1990 to 12.2% in 2010. Previous studies have 
recorded the growth of the WUI8,54, but we provide evidence that 

the WUI population has grown most in the most fire-vulnerable 
ecosystems in the western US. The disproportionate expansion of 
the WUI into the high PWS regions suggests that the increase in 
wildfire risk in the WUI is at least partly due to the higher vulner-
ability of vegetation to fires in particular areas of the WUI. This is 
corroborated by the evidence that the high-hazard zone witnessed 
the highest increase in relative WUI population and the highest rel-
ative d(burned area)

d(VPD)
 (Fig. 4b). Further research is needed to understand 

the socioeconomic demographics of the populations occupying 
these high-hazard areas. However, at a minimum, disproportionate 
growth in WUI areas with high PWS and rapidly increasing VPD 
suggests that previous estimates of changing wildfire risk in the 
western US may have been conservative. While noting that PWS is 
not the only factor influencing wildfire risk, the PWS dataset could 
inform local and state-wide priorities related to wildland develop-
ment, land use planning, vegetation management and home hard-
ening solutions to curb wildfire risk.

Although wildfire risk in the western US has increased due to 
rising aridity and population in the WUI, the increase in risk has 
been significantly regulated by PWS to climate. This suggests that 
wildfire danger models, such as the National Fire Danger Rating 
System40, which rely on LFMC estimates derived from meteorology 
alone, misrepresent wildfire danger because they do not account 
for spatial variations in PWS. Although our analysis focuses on 
the western US, the effect of PWS on burned area identified here is 
probably also present elsewhere across the globe. Overall, the con-
currence of high PWS, rising aridity and increasing WUI population 
has increased wildfire risk to people in many parts of the western 
US. In particular, the most sensitive ecosystems (PWS > 1.5) exhibit 
the most rapid increase in WUI population, along with widespread 
occurrence of above-average increase in VPD.

Accurate understanding and quantification of the processes 
shaping wildfire hazard, exposure and vulnerability are critical, 
given the growing losses from wildfire, including loss of habitat 
of vulnerable species55, loss of human life and structures9,10, direct 
and indirect economic costs56,57, and widespread impacts on pub-
lic health beyond the area that burns58. Representations of wildfire 
risk that do not account for interactions between ecological, atmo-
spheric and human drivers are thus susceptible to mischaracterizing 
wildfire risk. As we show here, examining the interplay between cli-
mate change, human population dynamics and the role of vegeta-
tion in regulating wildfire hazard can elucidate hidden interactions 
that lead to greater wildfire risk overall.

Methods
Calculating PWS. We defined PWS as the sum of slopes of a constrained linear 
regression between LFMC anomaly and lagged climate-derived moisture balance 
anomalies, with lags varying from 0 to 150 d in 15 d intervals, and a constraint that 
each slope be non-negative (equations 1 and 2). Because the slope between LFMC 
and climate-derived moisture balance is considered, PWS is an indicator of the 
degree to which the set of soil and plant traits in each location buffers the impact 
of recent and current climatic variations on LFMC. The unweighted sum of slopes 
was used to equally account for both concurrent and antecedent conditions. Unlike 
previous studies that use an unconstrained regression59, we constrained the regression 
coefficients to be non-negative. We thus did not allow an increase in climate-derived 
moisture balance anomaly to negatively affect an associated LFMC anomaly, which 
would be unphysical. Lags varied in 15 d intervals to match the temporal resolution of 
the LFMC data. Anomalies were computed by subtracting the pixel-specific seasonal 
cycle from the raw quantities to eliminate spatially varying seasonalities.

We used dead fuel moisture content (DFMC) to represent climate-derived 
moisture balance. The DFMC is an indicator of wetness and combines 
precipitation, temperature and humidity over lagged timescales into one index. 
It is sensitive to not just demand-side components of the water balance, such 
as atmospheric moisture demand, but also supply-side components, such as 
precipitation60. Here we used the 100 h DFMC, which is a meteorological estimate 
of wetness of twigs and branches 1–3 inches in diameter. It is calculated from the 
24 h antecedent precipitation and the equilibrium moisture content corresponding 
to the drying–wetting potential of the atmosphere during the same period after 
adjusting for the duration of daylight61.
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We calculated PWS as follows.

PWSs =
∑

i
βs,i (1)

LFMC′

s,t =

i=150∑

i=0,15,30…
βs,i × DFMC′

t−i,s + γs; βs,i ≥ 0 (2)

where,

LFMC′

s,t = Live fuel moisture content anomaly = LFMCs,t − LFMCs,doy(t) (3)

DFMC′ is the dead fuel moisture content anomaly (computation same as LFMC′), 
t is the date between June to November for the years 2016–2020, doy is day of 
year, s is the pixel index, γ is the intercept, β is the slope and i is the lag between 
LFMC′ and DFMC′ in number of days. The i increases in steps of 15 d intervals 
(half-monthly). The LFMCs,doy(t)  represents the mean LFMC at pixel s, on day of 
year t (across 2016–2020).

According to equations (1) and (2), if LFMC purely reflects climate-derived 
moisture balance, the PWS is high, whereas if LFMC is buffered against climatic 
water limitation (for example, through regulatory mechanisms such as stomatal 
control, root water uptake and so on62), PWS is low. We used data from 2016 to 
2020 to estimate PWS. We limited our observations to June–November to focus 
on the period during which plant water dry-down occurs due to climatic water 
limitation. By limiting our observations to this period, the sensitivity of PWS to 
other processes, such as plant growth in the spring, is minimized. We commenced 
our analysis in 2016, the first year of LFMC data availability. The PWS was not 
computed for the 9.5% of pixels where more than 50% of the LFMC temporal 
record was missing due to cloud or snow cover, or where synthetic aperture radar 
data was absent. A maximum plant water ‘memory’ of 150 d was chosen due to 
the apparent hydrological memory timescales of ecosystems of the western US63. 
The linear regression between LFMC′ and DFMC′ has a mean R2 of 0.3, with a 
wide distribution of fits (R2 ranging from 0 to 0.85; Supplementary Fig. 10).  
A relatively low mean R2 of 0.3 is consistent with expectations, as plant and 
soil hydraulic traits that contribute to plant water control are known to cause 
significant differences between LFMC and meteorology62,64,65. Since the regression 
coefficients were constrained to be non-negative, ~50% of the coefficients are 
zero (Supplementary Fig. 11).

We used LFMC data from an artificial intelligence model trained and validated 
in ecosystems of the western US using microwave and optical remote sensing30. 
The LFMC dataset was trained on field-measured moisture content of live leaves, 
needles and thin branches from the National Fuel Moisture Database66. The 
dataset has an overall R2 = 0.63, RMSE = 25% and bias = −1.9%, with consistent 
performance across all land cover types. We used DFMC data from GRIDMET67. 
We resampled the DFMC data to 15 d averages to match the start and end times of 
the LFMC maps. We rescaled the LFMC dataset from 250 m to 4 km using bilinear 
interpolation to match the spatial resolution of the DFMC dataset.

Linking PWS to the sensitivity of burned area to VPD. We separated the PWS 
map into 15 regions with equal-vegetated area on the basis of the histogram of 
PWS (Supplementary Fig. 1). Vegetated areas included regions with trees, shrubs 
and grasslands obtained from the National Land Cover Database version 201668. 
We then computed the slope between burned area and VPD in each region 
using linear regression. Combining different locations of similar PWS enabled 
calculating the burned area, which otherwise was not possible at the pixel-level. 
Our results were consistent when PWS was separated into 10 regions instead of 
15 (Supplementary Fig. 12). The linear fits between burned area and VPD have R2 
ranging from 0.48 to 0.58 and P values ranging from 0.0001 to 0.0010.

Although many aridity metrics have been used to study interannual changes 
in burned area2,37, we chose VPD to represent atmospheric aridity because of its 
parsimonious definition, its direct connection to atmospheric moisture demand, and 
its strong link to burned area compared with that of other meteorologically based 
aridity indicators49,69. Further, by not choosing the same meteorological indicator as 
the one chosen to assess the response of PWS to climate-derived moisture balance 
(DFMC), we minimized the introduction of artificial cross-correlations.

For each of the 15 PWS bins, we computed the slope between annual burned 
area and mean annual VPD, each calculated across April to March. We computed 
the slope using linear regression with an unconstrained intercept. We used burned 
area data for 2001–2020 from the Moderate Resolution Imaging Spectroradiometer 
burned area product MCD64A170, and VPD data from the Parameter-elevation 
Regressions on Independent Slopes Model71. We aggregated burned area from 500 m 
to 4 km resolution to match the resolution of VPD. We then computed the slopes 
and their associated linear standard errors for each of the 15 PWS bins, followed by 
computation of a final linear regression between d(burned area)

d(VPD)
 and PWS (Fig. 1a).

Spatial drivers of PWS. To investigate what factors influence PWS, we regressed 
the PWS map against eight plant hydraulic traits and six soil hydraulic traits 
using an ensemble approach. For plant traits, we used canopy height from 2005 

from ref. 72 and several hydraulic traits, including xylem capacitance, a stomatal 
conductance slope parameter that is inversely proportional to marginal water use 
efficiency (g1), maximum xylem conductance, the ψ50, and a hydraulic functional 
type derived from K-means clustering of these plant hydraulic traits determined 
from ref. 41. We also included isohydricity (a stomatal regulation trait) from ref. 45, 
and maximum rooting depth from ref. 73. For soil traits, we used average saturated 
hydraulic conductivity (Ks) the shape parameter describing the exponent of soil 
water retention curves (n), soil porosity from ref. 74, and fraction of soil, silt and 
clay from ref. 75 (Supplementary Table 1). We rescaled all traits to 4 km resolution 
using nearest neighbour interpolation since all traits (except for canopy height and 
rooting depth) have a coarse resolution of 25 km.

We used the rescaled traits as explanatory variables in a random forest 
regression to assess the importance of each trait. We ignored all time-varying 
factors in our analysis and used static maps of all traits to explain the variance 
in the static map of PWS. We used 3-fold cross-validation to evaluate strength 
of fit (Supplementary Fig. 8). To compute variable importance, we measured the 
average decrease in node impurity due to splitting at each variable and normalized 
the output (Fig. 2). For the random forest ensembles, we chose a minimum of six 
samples per terminal node, a minimum of 5 × 10−6 reduction in node impurity at 
each split, a minimum of two samples split per node, bootstrapped samples during 
node splits, and 50 trees within each forest. We used scikit-learn for the random 
forest regression76.

Estimating VPD trends. We estimated VPD trends using a pixel-specific linear 
regression of the annual-average VPD against year, for the period 1980–2020. For 
further investigation, we calculated relative VPD trends by dividing the absolute 
VPD trends by the pixel-specific 1980–2020 VPD mean (Supplementary Fig. 9).

Estimating WUI expansion. We used maps of population density and WUI 
from Martinuzzi et al.77 to track WUI expansion from 1990 to 2010 in regions 
with different wildfire hazard. Martinuzzi et al. identified WUI regions using 
pre-defined thresholds for density of human settlements in wildland areas, with 
different thresholds for intermix (≥6.18 houses per km2 and ≥50% cover of 
wildland vegetation) and interface regions (≥6.18 houses per km2 and <50% cover 
of vegetation, located <2.4 km of an area ≥5 km2 in size that is ≥75% vegetated). 
We did not differentiate between WUI intermix and WUI interface regions since 
both represent regions with high wildfire risk. We rescaled the WUI maps from 
their original census block-level resolution to 4 km to match the resolution of PWS. 
We classified any 4 km pixel that overlaps with a block-level WUI polygon as WUI 
since it contains at least some area with neighbouring urban and vegetated areas 
(Supplementary Fig. 13).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The PWS map is available at https://github.com/kkraoj/wildfire_from_lfmc. 
The LFMC maps are available at https://kkraoj.users.earthengine.app/view/
live-fuel-moisture. Climate data from GRIDMET are available at http://www.
climatologylab.org/gridmet.html. Wildland–urban interface maps are available at 
http://silvis.forest.wisc.edu/data/wui-change/.

code availability
The scripts required to reproduce our results are available at https://github.com/
kkraoj/wildfire_from_lfmc.
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Extended Data Fig. 1 | conceptual diagram showing the effect of plant-water sensitivity (PWS) on burned area. The DFMC denotes dead fuel moisture 
content. It represents climate-derived moisture balance (see Methods). The LFMC denotes live fuel moisture content.
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The derived plant-water sensitivity map along with the scripts required to reproduce the results presented in this manuscript can be found at https://github.com/
kkraoj/wildfire_from_lfmc. Live fuel moisture content maps are available from https://kkraoj.users.earthengine.app/view/live-fuel-moisture. Climate data from 
GRIDMET is available from http://www.climatologylab.org/gridmet.html. Wildland-urban interface maps are available from http://silvis.forest.wisc.edu/data/wui-
change/. 
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All studies must disclose on these points even when the disclosure is negative.

Study description This study estimates a new plant-functional trait called plant-water sensitivity. The trait quantifies the sensitivity of live fuel moisture 
content to climate-derived moisture balance. The trait is estimated using a regression of sattelite data.

Research sample The sample consists of all vegetated pixels in the 12-most western states of USA. 

Sampling strategy Data not sampled. All data is used. 

Data collection Data was collected by two sattelite-driven methods. Live fuel moisture content data was used from another study. It was estimated 
from Sentinel-1 microwave backscatter and Landsat-8 reflectance. Climate-derived moisture balance (dead fuel moisture content) 
was also used from another study (GRIDMET). It was estimated from a water-balance model with PRISM (https://
prism.oregonstate.edu/) as a forcing variable. 

Timing and spatial scale Spatial scale= 4 km (resolution of GRIDMET data) 
Timing: 2016 - 2020

Data exclusions Pixels which were covered for more than 50% of the area by open surface water, or developed land (buildings, etc.) were excluded.

Reproducibility Only statistical experiments were performed in this study. No sampling is used. Reproducibility is supported by making the code 
available. Executing the scripts will reproduce the figures. 

Randomization No grouping was performed. 

Blinding Not applicable. Only environmental data was used. 

Did the study involve field work? Yes No
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